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Abstract—Automatic sleep staging from single-channel 

electroencephalography (EEG) using artificial intelligence (AI) is 

emerging as an alternative to costly and time-consuming manual 

scoring using multi-channel polysomnography. However, current 

AI methods, mainly deep learning models such as convolutional 

neural network (CNN) and long short-term memory (LSTM), 

struggle to detect the N1 sleep stage, which is challenging due to its 

rarity and ambiguous nature compared to other stages. Here we 

propose SSC-SleepNet, an automatic sleep staging algorithm aimed 

at improving the learning of N1 sleep. SSC-SleepNet employs a 

pseudo-Siamese neural network architecture  owing to its capability 

in one- or few-shot learning with contrastive loss. Which we selected 

due to its strong capability in one- or few-shot learning with a 

contrastive loss function. SSC-SleepNet consists of two branches of 

neural networks: a squeeze-and-excitation residual network branch 

and a CNN-LSTM branch. These two branches are used to generate 

latent features of the EEG epochs. The adaptive loss function of 

SSC-SleepNet uses a weighing factor to combine weighted cross-

entropy loss and focal loss to specifically address the class imbalance 

issue inherent in sleep staging. The proposed new loss function 

dynamically assigns a higher penalty to misclassified N1 sleep stages, 

which can improve the model’s learning capability for this minority 

class. Four datasets were used for sleep staging experiments. In the 

Sleep-EDF-SC, Sleep-EDF-X, Sleep Heart Health Study, and 

Haaglanden Medisch Centrum datasets, SSC-SleepNet achieved 

macro F1-scores of 84.5%, 89.6%, 89.5%, and 85.4% for all sleep 

stages, and N1 sleep stage F1-scores of 60.2%, 58.3%, 57.8%, and 

55.2%, respectively. Our proposed deep learning model 

outperformed the most existing models in automatic sleep staging 

using single-channel EEG signals. In particular, N1 detection 

performance has been markedly improved compared to the state-

of-art models. 

 
Index Terms— Sleep staging, electroencephalography, pseudo-

Siamese network, adaptive loss function, N1 sleep.  
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I. INTRODUCTION 

LEEP diagnosis is always an important concern for 

public health and medicinal systems. Polysomnography 

(PSG) is the gold standard in clinical sleep assessment 

[1]-[3], which meticulously manually scored following the 

guidelines of the American Academy of Sleep Medicine 

(AASM) [4] into one of five distinct sleep stages: wakefulness 

(W), rapid eye movement (REM) sleep, and three stages of 

non-rapid eye movement (NREM) sleep (N1, N2, N3) [5]. 

Despite its comprehensiveness, the use of PSG has its 

drawbacks [6]; it is often perceived as uncomfortable for 

patients due to the large number of sensors and wires [7]. In 

addition, the evaluation process is not only time-consuming 

but also costly, requiring significant professional 

involvement, and posing a challenge to widespread clinical 

use. As a result, there's a shift toward finding simpler 

alternatives: using more convenient devices and automation to 

classify sleep stages [8][9][10]. Compared with multi-channel 

EEG signals, single-channel EEG signals are more easily 

collected by portable, lightweight devices.  

In recent years, deep learning has become the state of the 

art in EEG-based automatic sleep staging due to its ability to 

perform automatic feature extraction and achieve superior 

performance compared to traditional machine learning [11]-

[13]. Most current deep learning models for sleep staging rely 

on convolutional neural networks (CNNs) [12] and recurrent 

neural networks (RNNs) [14]-[16]. CNNs are effective in 

extracting features that represent short-term EEG patterns, 

while RNNs capture long-term temporal dependencies. To 

enhance this, models often incorporate long short-term 

memory (LSTM) [15], [17] or multi-head attention 

mechanisms [18], [19] to further capture temporal 

dependencies. For example, in 2017, Supratak et al. [20] 
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developed DeepSleepNet based on CNN and bidirectional 

LSTM networks and achieved an accuracy of 82.0% on the 

publicly available benchmark dataset Sleep-EDF-SC. 

Recently, many methods have used attention mechanisms to 

improve model performance in sleep staging. For example, the 

SleepEEGNet [21] achieved 84.3% accuracy on Sleep-EDF-

SC and 80.0% accuracy on Sleep-EDF-X. The AttnSleep 

model proposed by Eldele et al. [22] achieved an accuracy of 

84.4%, 81.3%, and 84.2% on the Sleep-EDF-SC, the Sleep-

EDF-X, and the Sleep Heart Health Study (SHHS) datasets, 

respectively.  

However, existing single-channel EEG models typically 

follow single-source single-model or serial multi-model 

structures, which struggle to effectively capture multi-

dimensional signal features. Different architectures offer 

unique strengths: CNNs excel in capturing local features [23]-

[25], RNNs model global temporal dependencies [26], [27], 

and SE-ResNet is particularly adept at enhancing important 

features while suppressing less relevant ones by explicitly 

modeling inter-channel dependencies[28]-[30]. A pseudo-

Siamese network (PSN) structure [31], [32], processing two 

different model architectures in parallel, can capture both 

similarities and differences between these architectures, 

resulting in a more comprehensive feature extraction process. 

N1 is characterized by the loss of alpha activity, emergence 

of theta waves, and slow rolling eye movements [33], and 

serves as a transitional phase that may include brief alpha 

bursts and arousals which plays a key role in sleep architecture 

and overall sleep quality. However, to the best of our 

knowledge, all the existing deep learning methods show 

relatively low performance in detecting N1 sleep [34], [35], 

with an F1 score of often less than 40-50% depending on the 

dataset. There can be several reasons for this. Firstly, 

compared with the other sleep stages, the limited number of N1 

epochs might lead to insufficient learning of N1 when training 

a sleep staging model, as N1 sleep accounts for only 

approximately 5% of the total sleep time per night [36]. 

Secondly, the scoring of N1 according to the AASM guidelines 

relies on EEG patterns that do not occur in all patients (such as 

the attenuation of alpha rhythm) and on other patterns that 

appear on EOG but not on EEG (such as slow eye movements) 

[37], [38]. Finally, the scoring on N1 also relies on the 

recognition of attenuating or disappearing patterns (like the 

alpha rhythm); N1 is scored in subsequent epochs until there is 

evidence for another sleep stage, such as the appearance of K 

complexes, spindles, etc. These scoring rules, in absentia of 

patterns, increase ambiguity and lead to substantial 

disagreement between human scorers [39]-[42]. Rosenberg and 

Van Hout reported agreement in N1 scoring of 63% against 

group consensus [43], and in a meta-analysis of inter-rater 

agreement, Lee et al reported Cohen’s kappa of only 0.24 [44]. 

In turn, this leads to disagreement between sleep staging 

algorithms and human scorers due to the model not being able 

to learn the prior knowledge of human scorers well, resulting in 

judgment errors [45]. In addition, previous research has focused 

primarily on optimizing overall classification performance (as 

loss function) for all sleep stages when modeling. The minority 

N1 stage contributes much less to those overall performance 

metrics and would likely be poorly optimized or overlooked. 

To tackle the challenge of effectively learning from 
imbalanced datasets with limited N1 sleep stage samples, we 

employ a Pseudo-Siamese Network (PSN) structure. By 

deviating from the conventional Siamese model, which relies 

on complete weight sharing for contrastive learning, PSN 

introduces architectural flexibility, which means we use the 

same inputs but different subbranches to share parameters. This 

allows for partial weight sharing or tailor-made designs for 

varying inputs, thereby enhancing the model's capacity to 

robustly represent features by scrutinizing both similarities and 

disparities across class samples. Leveraging this innovative 

architecture, we proposed a novel deep-learning framework 

called SSC-SleepNet for sleep staging with single-channel EEG 
data. This network utilized two different branches, each with a 

model that has been well applied to EEG-based sleep staging: a 

squeeze-and-excitation residual network (SE-ResNet) and a 

CNN-LSTM network. This enhances feature extraction by 

learning nuanced features from EEG signals by comparing the 

two branches. Moreover, we design an adaptive contrastive loss 

function. This loss function, superior to traditional cross-

entropy loss, excels in managing imbalanced datasets while 

maintaining good classification accuracy. Through this 

methodology, our framework aims to surpass the limitations of 

existing models in accurately detecting N1 sleep, providing a 
more balanced and effective learning approach to sleep stage 

classification based on single-channel EEG. The main 

contributions of this study are as follows: 

1) We propose a pseudo-Siamese neural network based on a 

heterogeneous parallel contrastive learning architecture. By 

extracting intrinsic modality-specific features within different 

model architectures and establishing joint associations between 

these modalities, the proposed model maximizes the similarity 

between features extracted from heterogeneous sub-models 

while minimizing inter-feature distance, thus improving sleep 

staging performance. 

2) We design an adaptive dynamic loss function, which 
enhances model training by adjusting weights in response to 

class imbalances, thereby improving classification accuracy for 

underrepresented stages like N1. 

3) The proposed model shows strong adaptability across 

various main EEG electrode positions and configurations, 

consistently achieving good performance on multiple different 

EEG channels.  

The remainder of this paper is as follows: Section II describes 

SSC-SleepNet details, including PSN structure and the adaptive 

dynamic loss function. Section III presents experimental 

methods and settings, Section IV shows the results of the 
experiments, followed by a discussion in Section V. Finally, 

Section VI concludes the study. 

II. METHODS: SSC-SLEEPNET 

A. Overall Framework  

The overall framework of the SSC-SleepNet is shown in Fig. 

1. For training a sleep staging model, 30-second single-channel 
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EEG signals are first preprocessed followed by our proposed 

PSN. Fig. 2. shows the details of the PSN architecture, 

including a CNN-LSTM branch and a SE-ResNet branch. 

These two branches work in parallel and share parameters. The 

outputs of the two branches are compared in terms of distance 

before a dense layer for classifying sleep stages. The results can 

be updated through backpropagation to minimize the loss 

function. 

  

 
Fig. 2. Architecture of our proposed pseudo-Siamese network. 
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Fig. 1.  Overview of the proposed SSC-SleepNet framework. 
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B.CNN-LSTM  

The CNN-LSTM branch is primarily designed for feature 

extraction from each 30-second epoch of EEG data. As depicted 

in Fig. 2. (the left branch), the CNN comprises four 

convolutional layers. Following each convolutional layer, there 

is a batch normalization layer, succeeded by an activation 

function in the form of a Gaussian error linear unit (GELU) [46]. 

Using the first convolutional layer as an illustration, Conv1D 
(64, 50, 1) is a one-dimensional convolutional layer indicating 

64 channels, a kernel size of 50, and a stride of 1. Likewise, 

Maxpool1D (2, 2) is a max pooling layer specifying a kernel 

size of 2 with a stride of 2. Dropout layers with a dropout rate 

of 0.5 are used to mitigate network overfitting. The feature 

maps obtained from the CNN layers undergo subsequent 

processing in an LSTM layer with 128 units.  

C. SE-ResNet  

The architecture of the SE-ResNet branch is shown in Fig. 2, 

which consists of an initial convolutional layer, followed by a 

series of SE-ResNet blocks. The SE-ResNet block is based on 

a ResNet [47] architecture with an SE part incorporated for 

performance enhancement [48]. The SE part adaptively 

recalibrates channel-wise feature responses to emphasize 

informative features, ultimately improving the representational 

capacity of the model [49].  

The ResNet part of each SE-ResNet block is designed to 
facilitate the training of deep neural networks by introducing 

residual connections. This is achieved by adding the input of a 

given layer to its output, creating a shortcut connection that 

skips one or more layers. The ResNet consists of a sequence of 

residual subblocks, each consisting of two or more 

convolutional layers, followed by batch normalization and 

activation functions. The final output of the ResNet part is 

obtained by summing the outputs of the last residual branch 

with the original network input, forming another residual 

connection, followed by additional layer normalization. 

For SE, global mean pooling is first applied to the input feature 

map, resulting in a channel-wise descriptor. This descriptor is 

then processed through two fully connected layers, where the first 

layer reduces the dimensionality by a factor of r (reduction ratio) 

and the second layer restores the original dimensionality. The 

output of the second fully connected layer is passed through a 

sigmoid activation function to produce a set of channel-wise 

weights. These weights are then used to scale the input feature 

map, enhancing the representation of important features while 

suppressing less useful features. This adaptive recalibration 

process allows the model to focus on the most informative 

features of the task at hand, thereby improving model 

performance. 

D. Adaptive Contrastive Loss Function 

We develop a novel loss function aimed at dynamically 

boosting the learning of N1 sleep and reducing the negative 

impact of the N1 sleep stage on the overall performance of 

automatic sleep staging models. This is achieved by introducing 

a dynamically generated hyperparameter 𝜆, used to adjust the 

classification loss during the training process. This method 
allows for more balanced learning, particularly beneficial for 

the underrepresented N1 stage. The loss function we designed 

is: 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 = (1 − 𝜆) × 𝐽𝑊𝐶𝐸 + 𝜆 × 𝐹𝐿 + 𝐶𝐿,             (1) 

where 𝐽𝑊𝐶𝐸  is the weighted cross-entropy loss. 𝐹𝐿 is the focal 

loss, and 𝐶𝐿 is the contrastive loss.  𝜆  is a factor dynamically 

adjusted according to the loss difference between 𝐹𝐿 and 𝐽𝑊𝐶𝐸. 

Different parts of the loss are described in the following. 

1) Weighted cross-entropy loss: Based on existing research 

[17], the N3 stage has relatively obvious slow wave activity, 

which can be well classified. Conversely, primarily due to its 
transitional nature and subtle physiological signs, the 

distinction between N1 and other stages such as W, N2, and R 

is the most challenging. As a result, our weighting system 

assigns the highest weight to N1 and the lowest weight to N3, 

while it assigns comparable weights to stages such as N2 and R. 

The function below is the weighted cross-entropy loss (𝑊𝐶𝐸) 

[50]:  

𝑊𝐶𝐸 = 𝑊 × 𝐽𝐶𝐸 (𝑦, 𝑝),                        (2) 

where 𝐽𝐶𝐸(𝑦, 𝑝) = 

−
1

𝑁
{∑ ∑ [𝑦𝑛

𝑐 log(𝑦̂𝑛
𝑐) + (1 − 𝑦𝑛

𝑐) × log(1 − 𝑦̂𝑛
𝑐)]𝐶

𝑐=1
𝑁
𝑛=1 }.

 (3) 

In Eq. (3), 𝐽𝐶𝐸  is the traditional cross-entropy loss function 

[51], y represents the true label, and p represents the probability 

that the model predicts that the sample belongs to each category. 

N is the number of samples. 𝑦𝑛
𝑐  and 𝑦̂𝑛

𝑐 represent the real and the 

predicted label, respectively. W is a set of class weights.  

2) Dynamic focal loss: For unbalanced datasets, Lin T Y et al. 

[52] proposed a focal loss function to reduce the attention 

from easily classified samples and focus on difficult samples. 

The focal loss (𝐹𝐿) can be calculated such that: 

𝐹𝐿(𝑝𝑡 , 𝛼𝑡 , 𝛾) = −𝛼𝑡(1 − 𝑝𝑡)𝛾log (𝑝𝑡),              (4) 

where 𝑝𝑡 is the probability of model prediction, 𝛼𝑡 is the set of 

class weights, and 𝛾 is the adjustment factor. As 𝛾 increases, the 

model pays less attention to the “easy-to-classify” samples but 

more to those “difficult-to-classify” samples. t represents the true 

label of each sleep stage, 𝛼𝑡  and 𝛾 can be automatically adjusted 

based on the model performance.  

3) Contrastive loss: The distance function 𝐷 between the first 

branch inputs 𝑥1 and the second branch inputs 𝑥2 is defined as 

the Euclidean distance [53] : 

𝐷(𝑥1, 𝑥2) = ||y(𝑥1)𝑖 − y(𝑥2)𝑖||2,              (5) 

where y (𝑥1)𝑖  represents the ith element output of the first 

branch, and y (𝑥2)𝑖  represents the ith element output of the 

second branch. The contrastive loss [54] of the PSN is: 

𝐶𝐿(𝑦, 𝑑, 𝑚) =
1

2𝑁
𝑦𝑖𝐷𝑖

2 + (1 − 𝑦𝑖)max (0, 𝑚 − 𝐷𝑖)
2,  (6) 

where N represents the number of samples, 𝑦𝑖  represents a 

binary label used to indicate whether a pair of samples (from the 

two branches) belongs to the same class. If two samples belong 

to the same category, then 𝑦𝑖 = 1 ; otherwise 𝑦𝑖 = 0. 
𝐷𝑖  represents 𝐷(𝑥1, 𝑥2)𝑖, and 𝑚 is a pre-defined boundary value 

used to determine when samples are considered similar. 

As stated, we use the CNN-LSTM model and the SE-ResNet 

model as the two branches of the PSN. During training, three 
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hyperparameters are used to adaptively adjust the loss function. 

In the focal loss function (In Eq.(4).), we adjust 𝛼  and 𝛾 

according to the classification accuracy after each training. The 

accuracy is initially set to 0.7. When the accuracy is higher than 

the last training result, a step size value is added to 𝛼 and 𝛾; 

while if lower, they are reduced by the same step size values. 

The range of 𝛼 was set to 0.1–1.0 with a step size of 0.05 and 

the range of 𝛾 was 0–5.0 with a step size of 1.The initial value 

of 𝛼 set 0.25 and the initial value of 𝛾 set 2.0. In addition, in Eq. 

(1), 𝜆 is dynamically adjusted according to the loss difference 

between 𝐹𝐿 and 𝐽𝑊𝐶𝐸 . If the 𝐽𝑊𝐶𝐸  value is larger than the 𝐹𝐿 

value, then the value of 𝜆  will be increased. The range of 

𝜆 ranged from 0.01 to 0.99 with a step size of 0.05 and an initial 

value of 0.75. 

 

III. METHODS: EXPERIMENTS AND EVALUATION 

A. Datasets  

In this study, as shown in Table I, we adopted four PSG 

datasets, namely Sleep-EDF-SC [55], [56], Sleep-EDF-X [57], 
SHHS [58], [59], and Haaglanden Medisch Centrum sleep 

staging dataset (HMC) [60] to evaluate the effectiveness of the 

proposed SSC-SleepNet for sleep staging based on single-

channel EEG signals. The details and the use of each dataset are 

provided in the following. 

1) Sleep-EDF-SC dataset: Originating from the Sleep-EDF 

database in PhysioNet, the Sleep-EDF-SC dataset consists of 39 

overnight PSG recordings from 20 healthy subjects aged 25-34 

years, with an equal gender distribution. This dataset is divided 

into two subsets: Sleep Cassette (SC) and Sleep Telemetry (ST). 

While the Sleep Cassette subset examines the effects of age on 

sleep, the Sleep Telemetry subset examines the effects of 
temazepam. The Sleep-EDF-SC participants wore a modified 

Walkman-like cassette-tape recorder [61]. The recorded data 

include EEG (Fpz-Cz channel and Pz-Oz channel) , EOG, and 

chin EMG signals sampled at 100 Hz and event markers. Some 

records also contain respiration and body temperature. For our 

investigation, we specifically used 39 recordings of the single 

EEG channel (Fpz-Cz channel or Pz-Oz channel) from the 

Sleep Cassette subset. 

2) Sleep-EDF-X dataset: Sleep-EDF-X, an extension of Sleep-

EDF-SC, presents 153 overnight PSG recordings. These 

recordings include data from 20 healthy participants and 58 
patients diagnosed with mild sleep difficulties. This spectrum 

ensures coverage of both conventional and slightly atypical 

sleep patterns. Participants range in age from 25 to 101 years 

old and include 41 males and 37 females. For each recording, a 

spectrum of physiological signals was recorded, including EEG, 

EOG, and EMG. Sleep stages were scored per epoch according 
to the Rechtschaffen and Kales (R&K) criteria [62] as one of 

eight established categories: "W", "S1", "S2", "S3", "S4", "R", 

"Movement", and "Unscored". 

3) SHHS dataset: The SHHS is a multicenter cohort study 

focusing on the cardiovascular consequences of sleep-

disordered breathing. SHHS participants underwent an 

overnight in-home PSG using the Compu medics Portable PS-

2 System (Abbotts Ville, Victoria, Australia) administered by 

trained technicians. The recordings include C3-A2 and C4-A1 

EEGs sampled at 125Hz, and some other physiological signals 

such as  EOGs for both the right and left eyes, chin EMG , and 

ECG sampled at 125Hz. Subjects enrolled in the study have a 

variety of conditions, ranging from pulmonary and 

cardiovascular diseases to coronary complications. Of the 

SHHS dataset, we considered two subsets in this work. First, 

we considered all SHHS data (Visit-1) to evaluate SSC-

SleepNet model performance, similar to previous studies [23]. 

Note that the recordings which did not have all five sleep stages 

(about 2% of the entire database) were excluded, resulting in 

5,463 recordings. Second, to minimize the impact of these 

diseases and compare the prediction differences between OSA 

patients and non-OSA patients as done in previous studies [20], 

[22], subjects with sleep disordered breathing (with an Apnea-
Hypopnea Index less than 5) were excluded. This led to a subset 

of 329 subjects from the SHHS dataset. For these two datasets, 

we used the C4-A1 EEG channel, recorded at a sampling rate 

of 125 Hz. 

4) HMC dataset: The Haaglanden Medisch Centrum in The 

Hague, the Netherlands, collected a diverse dataset of 151 

whole-night PSG sleep recordings in 2018. This collection used 

the SOMNO screen Plus and 10-20 (SOMNO medics Germany) 

recording device and includes data from 85 male and 66 female 

participants with an age of 53.9 ± 15.4 years (mean ± standard 

deviation). The data consists of four EEG (F4-M1, C4-M1, O2-
M1, and C3-M2), two EOG (E1-M2 and E2-M2), one bipolar 

chin EMG, and one ECG (single modified lead II) derivations. 

This montage meets the minimal recommended technical 

specifications for visual scoring of sleep stages according to the 

2.4. version of the AASM guidelines. For our analysis, we used 

the single EEG channel from the recordings, which are sampled 

at a frequency of 256 Hz. 

For the data preprocessing, we were guided by the 

methodologies enumerated in previous works [21], [22], [63], 

[64]. The preprocessing protocols for all datasets involved 

segmenting the recordings of EEG signals into 30-second epochs 

to ensure synchronization with the accompanying labels, 

TABLE I 

DETAILS OF THREE DATASETS USED IN OUR EXPERIMENTS 

Datasets Channel Subjects Recordings 
Sampling 

Rate 
W N1 N2 N3 R Total 

Sleep-EDF-SC Fpz-Cz/Pz-Oz 20 39 100 Hz 8285 2804 17799 5703 7717 42308 

Sleep-EDF-X Fpz-Cz/Pz-Oz 78 153 100 Hz 65951 21522 69132 13039 25835 195479 

SHHS C4-A1 
329 329 125 Hz 46319 10304 142125 60153 65953 324854 

5463 5463 125 Hz 445627 61898 665508 222570 241922 1637525 

HMC 

F4-M1/C4-

M1/O2-M1/C3-

M2 

151 151 256 Hz 23686 15548 50083 26671 21255 137243 

Note that, W, N1, N2, N3 and R indicate the number of 30-second epochs for each sleep stage, on each dataset. 
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suggested by the AASM. Epochs labeled as "movement" and 

"unscored (signed ? )" were excluded. To use consistent scoring 

labels, we merged the “S3” and “S4” from the R&K scorings in 

Sleep-EDF and SHHS datasets into the "N3" AASM sleep label. 

To sharpen our analysis of distinct sleep cycles, our study only 

included the 30 minutes of wakefulness preceding the first sleep 

epoch of the recording [20]. As different datasets have different 

acquisition channels and acquisition devices, we cannot solve the 

problem of inconsistent acquisition channels for different 

datasets. Therefore, we selected different EEG channels of the 

same dataset for horizontal comparison experiments in Sleep-

EDF-SC, Sleep-EDF-X and HMC. 

B. Experimental Design 

To evaluate the performance of various models, We used k-

fold cross-validation [65] to evaluate our model. Given a 

dataset with 𝑁𝑑  subjects, during each fold, the recordings of 

𝑁𝑑 − (𝑁𝑑/𝑘) subjects serve as the training set, while 

recordings from the remaining (𝑁𝑑/𝑘) subjects were used for 
validation. This subject-level split guarantees that for a given 

cross-validation iteration, all data of a given subject is only part 

of the training or of the validation splits, but never of both. 

Related to the relatively small size of the Sleep-EDF-SC, Sleep-

EDF-X, SHHS-329, and HMC datasets, we consistently set the 

value of k at 20, similar to previous studies [21], [23], [64]. The 

cross-validation procedure allows us to assess the performance 

over the complete dataset. After repeating the process k times, 

each time selecting different subjects for the test set, the 

predicted results from all test sets across all folds were 

combined to provide a comprehensive assessment across all 
subjects in the dataset.  

We also randomly split the subject into 70% for training and 

30% for testing in SHHS-5463, referring to the pervious works 

[11], [66]. From the training set, 100 subjects were used for 

validation, same as the studied done previously [11], [67]. 

C. Model Comparison and Evaluation Metrics 

1) Ablation experiments: To investigate the impact of 

different components within the proposed SSC-SleepNet 

framework on sleep staging, ablation experiments are 

performed on the Sleep-EDF-SC. 

First, we obtained several models by removing different 

network components of the SSC-SleepNet and applying the 

same adaptive contrastive loss functions. These models and 

their configurations are as follows:  

a. CNN-LSTM: a model including only CNN and LSTM 

and using adaptive dynamic loss function. 

b. SE-ResNet: a model combining SE and ResNet and using 
adaptive dynamic loss function. 

c. Siam-CNN-LSTM: a Siamese network model including 

two branches of CNN-LSTM blocks and using adaptive 

dynamic loss function. 

d. Siam-SE-ResNet: a Siamese model including two 

branches of SE-ResNet blocks and using adaptive 

dynamic loss function. 

e. SSC-SleepNet: our proposed model, including one 

branch of CNN-LSTM and one of SE-ResNet and using 

adaptive dynamic loss function. 

Besides, we also compared six loss functions of SSC-

SleepNet in Sleep-EDF-SC dataset, including the weighted 
cross-entropy loss (WCE), the focal loss (FL), the contrastive 

loss (CL), the combination of the weighted cross-entropy loss 

and the focal loss (WCE+FL), the combination of the weighted 

cross-entropy loss and the contrastive loss (WCE+CL) and our 

proposed adaptive dynamic loss function that combines WCE, 

FL and (WCE+FL+CL). Here the factor λ was experimentally 

set to 0.75. This ablation experiment was conducted to 

understand the impact of each loss on the final sleep staging 

performance. 

2) Evaluation metrics: To assess the classification 

performance per class, we employed precision (PR), recall (RE), 

F1-score (F1), and G-mean (GM) as metrics. Moreover, 
accuracy (ACC), macro F1-score (MF1), Cohen's Kappa (κ) 

[68], and macro-averaged G-mean (MGm) are utilized to 

evaluate the overall classification performance. We evaluate 

these by aggregating all epochs from the test recordings. We 

denote the true positive, false positive, true negative, and false 

negative of 𝑖th class by  𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝑇𝑁𝑖, and 𝐹𝑁𝑖 respectively. 

The formulas for PR, RE, F1, ACC, MF1, and MGm are then 

expressed as follows: 

𝑃𝑅𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
                                (7) 

𝑅𝐸𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
                                (8) 

𝐹1𝑖 =  
2∗𝑃𝑅𝑖∗𝑅𝐸𝑖

𝑃𝑅𝑖+𝑅𝐸𝑖
                                (9) 

𝐴𝐶𝐶 =  
∑ 𝑇𝑃𝑖

𝐶
𝑖=1

𝑆
                                (10) 

𝑀𝐹1 =  
1

𝐶
∑ 𝐹1𝑖

𝐶
𝑖=1                          (11) 

𝑀𝐺𝑚 =  
1

𝐶
∑ √

𝑇𝑁𝑖

𝑇𝑁𝑖+𝐹𝑃𝑖
∗

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝐶
𝑖=1 ,            (12) 

where 𝑆  represents the total number of samples and 𝐶 
represents the total number of classes. 

3) Model performance under N1 optimization: Given that 

our approach prioritizes improving the performance of the N1 

sleep stage while minimizing the impact on other metrics, we 

conducted extreme bias experiments targeting N1 within the 

model. This was driven by our desire to uncover avenues for 

even better predictions of the N1 sleep stage. Thus, we shifted 

the focus of the loss function from the original global accuracy 

to exclusively targeting N1 (thereby emphasizing N1 

importance). 

4) Visual Representation of Features: The automatic 
classification results obtained with the SSC-SleepNet were 

compared with the reference from manual scoring of the PSG, 

available for each dataset. In order to better explore the 

representation learning process of SSC-SleepNet, we used the 

data analysis method of uniform manifold approximation and 

projection (UMAP) [69] to visualize the dimensionality-

reduced features of the raw EEG signal, CNN and LSTM 

branches, combining CNN and LSTM and SE-ResNet, and the 

third-to-last fully connected layer. 

5) Performance Comparison: We compared our method 

with existing state-of-the-art methods. First, we evaluated the 
model's performance against other state-of-the-art models by 
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comparing metrics such as total epochs, F1 score, ACC, MF1, 

MGm, Kappa, and average training time for each sleep stage 
across several datasets, including Sleep-EDF-SC, Sleep-EDF-

X, SHHS-5463, SHHS-329, and HMC. Second, we compared 

model parameters and floating-point operations (FLOPs).  

D. Statistical Analysis 

We also calculated sleep statistical indicators (mean ± 

standard deviation) for each recording, including total wake 
time (TWT), total sleep time (TST), sleep efficiency (SE), wake 

after sleep onset (WASO), and sleep stages ( N1, N2, N3, R), 

and used Bland Altman plots [70] to assess the bias (mean error) 

and the 95% limits of agreement (bias plus/minus 1.96 times 

the standard deviation, std) of the differences between sleep 

statistics (SE, WASO and TST) obtained from manual 

annotation and from automatic scoring with our method. 

E. Parameter Optimization 

To enable parameter optimization, training, and evaluation of 

models, we chose Python 3.10 as the programming language 

and TensorFlow 2.13.0 as the deep learning framework. Two 

NVIDIA RTX A5000 GPUs were used to perform 

computations. We used the “ReduceLROnPlateau” method [71] 

to adjust the learning rate during training. Additionally, we 

dynamically adjusted parameters α, γ, and 𝜆 in the proposed 

loss function (as described in Section II-E) to optimize the 
model’s performance. The “Adam” optimizer [72] was applied 

to minimize our class-aware loss and learn the model weights. 

IV. RESULTS 

Fig. 3. illustrates the comparison of the classification results 

between the five model variations in the ablation experiments. 

The overall classification performance of PSN models is better 

than using the SE-Resnet branch or the CNN branch alone, 
which further confirms the effectiveness of fusing global 

hierarchical features and local time features.  

We also performed ablation experiments on the loss 

functions of SSC-SleepNet. Fig. 4. shows the performance of 

SSC-SleepNet with different loss functions: WCE, FL, CL, 

WCE+FL, WCE+CL and WCE+FL+CL. The adaptive 

dynamic loss function (WCE+FL+CL) achieved the best results 

for all metrics, including ACC, MF1, mGm and Kappa. Notably, 

the WCE+FL combination outperformed WCE+CL, 

highlighting the effectiveness of the academic parameter λ in 

TABLE III 

CONFUSION MATRIX AND PER-CLASS METRICS OF SSC-SLEEPNET SLEEP STAGING MODEL ON THE SLEEP-EDF-X  

 Predicted Per-class Metrics 

W N1 N2 N3 R 
RE 

(%) 

PR 

(%) 

F1 

(%) 

GM 

(%) 

W 62911 1280 722 54 984 95.4 90.6 93.0 98.6 

N1 2118 11690 4308 525 2881 54.3 63.0 58.3 73.1 

N2 3686 2515 58201 1634 3096 84.2 88.6 86.4 90.9 

N3 17 65 948 11968 41 91.8 83.2 87.3 96.1 

R 668 3004 1484 197 20482 79.3 74.5 76.8 89.4 

 

 

 
Fig. 4.  The ablation for different loss functions from Sleep-EDF-SC. 
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TABLE II 

CONFUSION MATRIX AND PER-CLASS METRICS OF SSC-SLEEPNET SLEEP STAGING MODEL ON THE SLEEP-EDF-SC IN FPZ-CZ EEG CHANNEL 

 Predicted Per-class Metrics 

W N1 N2 N3 R 
RE 

(%) 

PR 

(%) 

F1 

(%) 

GM 

(%) 

W 7515 313 158 15 184 91.8 95.5 93.6 95.3 

N1 222 1674 328 4 576 59.7 60.8 60.2 76.2 

N2 46 249 16594 382 528 93.2 91.6 92.4 93.5 

N3 19 2 510 5165 7 90.6 92.8 91.6 94.6 

R 68 517 532 3 6597 85.5 83.6 84.5 90.7 

 

 

 
Fig. 3.  Ablation experiment on Sleep-EDF-SC. 
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TABLE IV 

CONFUSION MATRIX AND PER-CLASS METRICS OF SSC-SLEEPNET SLEEP STAGING MODEL ON THE SHHS-5643 IN C4-A1 EEG CHANNEL 

 Predicted Per-class Metrics 

W N1 N2 N3 R 
RE 

(%) 

PR 

(%) 

F1 

(%) 

GM 

(%) 

W 413306 7325 18406 1688 4902 92.8 94.2 93.5 95.3 

N1 9762 32939 9665 1261 8271 53.2 63.1 57.8 72.5 

N2 9102 9043 611504 18931 16928 91.9 90.2 91.0 92.5 

N3 1406 17 19002 201365 780 90.5 89.7 90.1 94.3 

R 4996 2857 19579 1143 213347 88.2 87.4 87.8 92.9 
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balancing the contributions of focal and contrastive losses. The 

superior performance of WCE+FL+CL is due to the 

complementary strengths of these loss functions, which balance 

data representation, emphasis difficult cases, and enhance 

feature discrimination, resulting in optimal performance across 

all metrics.  

Tables II-VI show the evaluation results of the SSC-SleepNet 

model on the Sleep-EDF-SC, Sleep-EDF-X, SHHS-5463, 

SHHS-329 and HMC in Fpz-Cz, Fpz-Cz, C4-A1, and F4-M1 

EEG channel. The results include the confusion matrix, as well 

as the per-class evaluation metrics, including PR, RE, and F1. 
In our experiments, the rows of the confusion matrix represent 

the true labels, and the columns represent the predicted labels. 

The results of Pz-Oz channel of Sleep-EDF-SC and Sleep-EDF-

X, C4-M1, O2-M1, C3-M2 EEG channel of HMC is shown in 

Table IX. The SSC- SleepNet shows high performance across 

all metrics in the classification of "W", "N1", "N2", "N3", and 

"R" sleep stages in all four datasets.  

Table VII shows the results obtained in the Sleep-EDF-SC 

dataset after optimizing the model for N1 detection. The F1 

score increases from 61.0% to 67.3%, albeit with a concurrent 

but slight decrease in performance for the other sleep stages. 
We visualize the feature distribution of each component of 

SSC-SleepNet on the Sleep-EDF-SC Fig. 5. The features of the 

five sleep stages in the raw EEG signals appear disorganized 

and lack clear distinguishability. we opt for the same set of 

parameters to generate UMAP, mainly for the purpose of fair 

and consistent comparisons across the datasets. The features 

output by the CNN and LSTM branch and the Se-Resnet branch 

produce a relatively clear preliminary discrimination among the 

four classes. Ultimately, compared with SiamSleepNet (see Fig. 

5c), after adding the dynamic loss function, the final fully 

connected layer can more clearly separate sleep stages.  

A comparison of the resulting overnight sleep statistics for 

both our SSC-SleepNet and manual scoring is shown in Table 

VIII. In this table, we show the mean and standard deviation as 

calculated over the recordings. Due to our unified data 

processing, the TWT, TST, WASO, and SE in the four datasets 

TABLE VI 

CONFUSION MATRIX AND PER-CLASS METRICS OF SSC-SLEEPNET SLEEP STAGING MODEL ON THE HMC IN F4-M1 EEG CHANNEL 

 Predicted Per-class Metrics 

W N1 N2 N3 R 
RE 

(%) 

PR 

(%) 

F1 

(%) 

GM 

(%) 

W 19581 2328 825 28 924 82.7 84.1 83.4 89.4 

N1 2166 8493 2080 719 2080 54.7 55.6 55.2 71.9 

N2 1060 2812 39704 2490 4017 79.3 86.1 82.5 85.7 

N3 54 139 2119 23885 474 89.6 85.8 87.6 92.9 

R 425 1492 1399 726 17213 81.0 69.7 75.0 87.0 

 
TABLE VII 

CONFUSION MATRIX AND PER-CLASS METRICS OF THE SSC-SLEEPNET UNDER N1 OPTIMIZATION USING THE SLEEP-EDF-SC IN FPZ-CZ EEG CHANNEL 

 Predicted Per-class Metrics 

W N1 N2 N3 R 
RE 

(%) 

PR 

(%) 

F1 

(%) 

GM 

(%) 

W 7443 455 109 68 210 89.8 88.1 89.0 93.4 

N1 193 2179 173 7 252 77.7 59.4 67.3 86.5 

N2 337 483 15308 642 1029 86.0 90.7 88.3 89.7 

N3 68 10 671 4945 9 86.7 85.7 86.2 92.1 

R 404 541 610 109 6053 78.4 80.1 79.3 86.6 

 

TABLE V 

CONFUSION MATRIX AND PER-CLASS METRICS OF SSC-SLEEPNET SLEEP STAGING MODEL ON THE SHHS- 329 IN C4-A1 EEG CHANNEL 

 Predicted Per-class Metrics 

W N1 N2 N3 R 
RE 

(%) 

PR 

(%) 

F1 

(%) 

GM 

(%) 

W 41127 385 2081 202 2524 88.8 84.9 86.8 93.0 

N1 1509 5528 1294 216 2257 51.2 73.9 60.5 71.3 

N2 2795 741 124184 4148 10257 87.4 89.1 88.3 89.5 

N3 309 170 5312 53860 502 89.5 92.0 90.8 93.8 

R 2721 661 6436 115 56020 84.9 78.3 81.5 89.4 

 

 

(a)                    (b)                   (c)                  (d) 
Fig. 5.  UMAP visualization of latent features in the representation learning 

process of SSC-SleepNet on the Sleep-EDF-SC. (a) Raw EEG epochs. (b) 

Outputs of the CNN and LSTM branch. (c) Outputs of combining CNN and 

LSTM and SE-ResNet. (d) Outputs of the third-to-last fully connected layer. 

Wake            N1 stage            N2 stage            N3 stage            REM

 
(a)                                (b)                                 (c)        

Fig. 6.  Bland-Altman graphs for each sleep index in Sleep-EDF-SC. (a) SE, 

(b) WASO, and (c) TST. The X axis and Y axis represent the mean of the 

measurements of the experts and those of the proposed method and the 

difference between the results of the manual and the automatic method, 

respectively. The horizontal lines in the Bland-Altman plots represent the mean 

(bias = mean error, 95% limits of agreement = 1.96* standard deviation of the 

error). 
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do not reflect the real-life scenario but are provided here for the 

sake of comparison. It can be observed that the estimated 

overnight sleep statistics using our proposed methodology are 

very close to those calculated from the human scorers, 

especially for the time spent in the N1 stage. 

The results of the Bland-Altman graph, in Fig.6., showed that 

the sleep indices obtained using the manual scoring and the 

proposed method were similar in terms of the SE, WASO and 
TST.  

In order to assess the performance of the proposed SSC-

SleepNet in sleep stage classification relative to other state-of-

the-art models, we conducted comparative experiments, and the 

detailed results are presented in Table IX. SSC-SleepNet can 

distinguish W, N1, and N2 sleep stages well, but N3 and REM 

might be lower than other models' performance, which may be 

because we concentrate more on N1 and less attention is paid 

to N3 and REM. SSC-SleepNet also achieves the highest 

accuracy, MF1 score, and kappa score. To compare the 

computational complexity of different methods, Table X shows 
the number of parameters as well as the FLOPs. The calculation 

complexity of AttnSleep, with 4.6M parameters, is 33.1M 

FLOPs. The application of the adopted dynamic loss increased 

the computational complexity, where multiple autocorrelation 

calculations on the input data were required.  

V. DISCUSSION 

In our approach, we used a novel pseudo-Siamese neural 
network model to learn hierarchical and temporal sleep stage 

features. This enables the model to extract and learn complex 

representations and patterns from a single EEG signal across 

different temporal and spatial scales. We introduced an adaptive 

contrastive loss function that allows the model to dynamically 

adapt to unbalanced sample size problems to improve the 

overall classification performance. The significance of this 

study lies in its accurate prediction of the N1 sleep stage, an 

indicator of overall sleepiness and sleep quality [74], [75]. 

A. Pseudo-Siamese Neural Network 

The Pseudo-Siamese Neural Network, inspired by 

contrastive learning, uses a dual-branch network structure, 

aiming to maximize the predictive accuracy of the model by 

calculating the similarity between the outputs of these two 

branches. Here we choose two separates’ models, one for each 

branch. For the first branch, we adopt a CNN-LSTM model. 

These models are widely used in the field of sleep staging [76]-
[78], effectively learning both local features and temporal 

sequences from electroencephalogram signals. For the second 

branch, we adopt the SE-ResNet model which has been widely 

applied in image recognition in recent years. This model is 

capable of learning critical optimal features at deeper network 

layers, thus overcoming the problems of overfitting and 

degradation in deep network models. It also excels in learning 

global deep-layer feature patterns. By integrating these two 

network models into a unified framework, we developed a 

network capable of learning both local temporal features and 

global deep-layer features. 

B. Improvement of the Loss Function 

Designing an effective loss function is critical for building 

and improving deep learning models. A polynomial loss 

function can be used to improve model performance and 

generalization by adjusting its expansion coefficients [79]. 

Therefore, we incorporate these coefficients to improve the 
traditional cross-entropy loss function. In the presence of 

uneven distribution of different sleep stages, traditional cross-

entropy may bias the model towards predicting more common 

categories, potentially leading to biased classification results. 

Therefore, we have integrated the focal loss function into the 

SSC-SleepNet model to dynamically adjust the model's 

predictions. The dynamic parameters α and γ in focal loss can 

focus on the weighting of small sample data sets based on the 

model's predictions. As a result, this approach achieves higher 

F1 scores for the minority class N1 when compared with 

approaches reported in literature, on the same data. 
Additionally, we introduced a dynamic variable λ to 

dynamically weigh the results of focal loss in the adaptive 

TABLE VIII 

SLEEP MEASURES SUMMARY ASSESSED WITH MANUAL ANNOTATION AND SSC-SLEEPNET ANNOTATION (MEANS ± STANDARD DEVIATIONS) 

Dataset  Sleep-EDF-SC Sleep-EDF-X SHHS (N=329) HMC 

Annotation  Manual Automatic Manual Automatic Manual Automatic Manual Automatic 

TWT(min) * 130.7±118.9 145.5±82.2 228.2±187.7 224.2±128.8 89.9±24.8 95.8±12.0 78.4±64.0 81.9±29.7 

TST (min) * 436.2±71.6 426.0±65.2 423.3±62.1 428.8±64.4 423.3±31.1 428.3±28.4 376.0±87.5 384.8±72.2 

SE (%)* 79.0±10.6 74.8±9.3 69.0±15.4 64.6±6.3 82.5±4.7 81.9±2.1 82.8±13.9 81.0±6.56 

WASO (min) 46.2±70.2 48.7±41.1 39.1±46.0 42.0±48.3 35.4±19.5 35.8±12.0 60.0±53.6 61.4±44.5 

N1 (min) 36.0±21.0 27.3±25.3 70.3±45.8 70.4±41.0 15.7±9.7 18.8±25.3 51.5±34.4 55.5±14.4 

N2 (min) 228.2±65.9 224.2±44.9 225.9±56.3 235.6±22.6 216.0±42.0 218.5±37.3 165.8±51.2 171.3±50.5 

N3 (min) 73.1±36.7 69.2±29.7 42.6±40.4 38.9±13.6 91.4±39.1 82.3±38.4 88.3±42.2 85.9±40.5 

R (min) 98.9±27.9 105.3±33.2 84.4±31.4 83.9±18.4 100.2±17.6 108.8±16.8 70.4±31.6 72.1± 28.7 

Abbreviations: TWT — total wake time; TST — total sleep time; SE — sleep efficiency; WASO — wake after sleep onset; N1 — sleep stage 1; N2 — sleep 

stage 2; N3 — sleep stage 3; and R — rapid eye movement sleep stage. 

* Due to we did the unified data processing, the TWT, TST, SE and WASO in four datasets are not representing the real-life scenario, but simply for comparison. 

TABLE X 

COMPREHENSIVE COMPARISON OF EFFICIENCY AND PERFORMANCE OF THE 

STATE-OF-ART MODELS 

Model Parameters (M) FLOPs (M) 

DeepSleepNet** [81] [20]  ~24.7  / 

DeepSleepNet+** [85] [86] ~24.8 ~55.0 

DeepSleepNet-Lite* [81] ~0.6  / 

XSleepNet2**  [81] [63] ~5.8  / 

SleepEEGNet** [81] [21]  ~2.6 / 

SeqSleepNet** [67] [81] ~0.2   

U-Sleep* [83] ~3.1  / 

SleepTransformer* [84] ~3.7  / 

AttnSleep**[85] [22] ~0.5  ~64.0 

SSC-SleepNet (ours) ~4.6  ~33.1 

Note that, in all models, * represents the results reported in previous works, are not 

compatible for a direct comparison here due to the discrepancies in data split, the number of 

channel used, modelling tasks, etc. ** represents the results reported on second previous 

works, which may cause different results due to the different environments or parameters, 

etc., the first [ref.] represents the second report work and the second [ref.] represents the 

original work reports. 
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contrastive loss function, ensuring that the overall performance 

is not compromised. This result further validates the 
effectiveness of the designed adaptive contrastive loss function 

in improving model performance and mitigating data imbalance. 

C. EEG Channels 

In clinical sleep research, PSG is widely used as a 

comprehensive method to assess sleep, integrating a wide range 

of physiological signals. In our study of analyzing the HMC 
dataset, we found that the F4-M1 channel demonstrated 

performance in N1 sleep stage classification. This may be 

attributed to the enhanced ability of the prefrontal region to 

capture specific EEG features, such as the α-to-θ transition and 

prominent slow waves. Notably, previous studies have shown 

that the AASM-recommended EEG montage, which uses F4-

M1 as the primary sensor, achieves higher inter- and intra-rater 
agreement for N1 scoring compared to the "acceptable" 

montage configurations, such as C4-M1 [66]. This supports our 

findings, suggesting that frontal referential montages offer 

clearer distinguishability of N1 sleep stages compared to frontal 

bipolar and central referential electrode configurations.  

D. Staging Sleep Staging in Patients with Sleep Disorders 

In addition to health subjects, we evaluated SSC-SleepNet on 

the SHHS-5463 and HMC datasets to assess automatic sleep 

staging in patients with sleep disorders, primarily with OSA. In 

SHHS, we compared the sleep staging performance of SSC-

SleepNet for non-OSA patients (AHI < 5) with that for a general 

TABLE  IX 

COMPARISON WITH STATE-OF-THE-ART MODELS ON SLEEP-EDF-SC, SLEEP-EDF-X, SHHS-5643, SHHS-329 , AND HMC DATASETS. 

Dataset Method Channel(s) # 30-s 

epoch 

Per-class F1 Overall Metrics 

W 

(%) 

N1 

(%) 

N2 

(%) 

N3 

(%) 

REM 

(%) 

Acc 

(%) 

MF1 

(%) 

MGm 

(%) 

κ Average 

training 

time / fold  

Sleep-

EDF-SC 

DeepSleepNet* [20] Fpz-Cz 41950 84.7 46.6 85.9 84.8 82.4 82.0 76.9 - 0.76 2.5 hrs** 

DeepSleepNet** [80] [20] Fpz-Cz 42308 86.7 45.5 85.1 83.3 82.6 82.0 76.9 - 0.76 - 

DeepSleepNet** [64] [20] Fpz-Cz 42308 
 

Fpz-Cz 42308 86.0 45.0 85.1 84.0 82.6 82.0 76.9 - 0.76 - 

DeepSleepNet-Lite* [81] Fpz-Cz 42308 87.1 44.4 87.9 88.2 82.4 84.0 78.0 - 0.78 - 

ResAtten* [82] Fpz-Cz 42308 90.2 48.3 87.8 85.6 83.0 84.3 79.0 - 0.78 - 

AttnSleep* [22] Fpz-Cz 42308 89.7 42.6 88.8 90.2 79.0 84.4 78.1 85.5 0.79 21 min 

U-Sleep* [83] Majority vote - 93.0 57.0 86.0 71.0 88.0 - 79.0 - - - 

SeqSleepNet**[22] [23] Fpz-Cz 42308 87.7 43.8 88.2 86.5 84.0 84.6 78.0 85.3 0.79 2.5hrs** 

SeqSleepNet**[80] [23] Fpz-Cz 42308 91.2 44.7 88.0 86.2 83.0 85.6 78.6 - 0.80 - 

L-SeqSleepNet* [80] Fpz-Cz 42308 91.6 45.3 88.5 86.2 85.2 86.3 79.3 - 0.81 - 

XSleepNet1* [63] Fpz-Cz EEG, EOG 42308 91.3 49.5 88.0 86.9 84.2 86.0 80.0 - 0.81 - 

XSleepNet2* [63] Fpz-Cz EEG, EOG 42308 92.2 51.8 88.0 86.8 83.9 86.3 80.6 - 0.81 - 

SleepEEGNet* [21] Fpz-Cz 42308 89.2 52.2 86.8 85.1 85.0 84.3 79.8 - 0.79 1.5 hrs** 

LGSleepNet* [64] Fpz-Cz 42308 91.8 49.4 89.6 89.8 82.6 86.0 80.7 88.2 0.81 - 

SSC-SleepNet (ours) Fpz-Cz 42308 93.6 60.2 92.4 91.6 84.5 89.0 84.5 90.1 0.85 0.8 hrs 

DeepSleepNet**[21] [20] Pz-Oz 41950 88.1 37.0 82.7 77.3 80.3 79.8 73.1 - 0.72 - 

SleepEEGNet* [21] Pz-Oz 42308 90.3 44.6 85.7 81.5 82.9 82.8 77.0 - 0.77 - 

ResAtten* [82] Pz-Oz 42308 87.2 36.8 85.2 81.3 80.1 80.7 74.1 - 0.74 - 

SSC-SleepNet (ours) Pz-Oz 42308 91.3 51.5 87.6 86.1 82.8 84.5 79.9 87.5 0.79 0.8 hrs 

Sleep-

EDF-X 

DeepSleepNet** [22] [20] Fpz-Cz 195479 90.9 45.0 79.2 72.7 71.1 78.8 71.8 81.6 0.70 7.2 hrs** 

DeepSleepNet** [64] [20] Fpz-Cz 195479 90.8 44.8 78.5 67.9 71.3 76.9 70.7 - 0.69 - 

DeepSleepNet-Lite* [81] Fpz-Cz 163948 91.5 46.0 82.9 79.2 76.4 80.3 75.2 - 0.73 - 

AttnSleep* [22] Fpz-Cz 195479 92.0 42.0 85.0 82.1 74.2 81.3 75.1 83.6 0.74 1.7 hrs 

U-Sleep* [83] Majority vote - 80.0 58.0 88.0 64.0 91.0 - 76.0 - - - 

SeqSleepNet** [22] [23] Fpz-Cz 195479 91.8 46.0 85.0 77.5 81.0 82.6 76.3 84.3 0.76 7.3 hrs** 

XSleepNet1* [63] Fpz-Cz, EOG 222479 92.6 50.2 85.9 79.2 81.3 83.6 77.8 - 0.77 - 

XSleepNet2* [63] Fpz-Cz, EOG 222479 93.3 49.9 86.0 78.7 81.8 84.0 77.9 - 0.78 - 

SleepTransformer* [84] Fpz-Cz 222479 91.7 40.4 84.3 77.9 77.2 81.4 74.3 - 0.74 - 

SleepEEGNet* [21] Fpz-Cz 222479 91.7 44.1 82.5 73.5 76.1 80.0 73.6 - 0.72 - 

SleepEEGNet**[22] [21] Fpz-Cz 195479 89.8 42.1 75.2 70.4 70.6 74.2 69.6 82.3 0.66 4.6 hrs** 

LGSleepNet* [64] Fpz-Cz 195479 92.6 43.7 85.5 83.0 74.9 82.3 76.0 84.9 0.75 - 

SSC-SleepNet (ours) Fpz-Cz 195479 93.0 58.3 86.4 87.3 76.8 84.5 80.4 89.6 0.79 1.8 hrs 

SleepEEGNet* [21] Pz-Oz 222479 90.3 42.2 79.7 94.9 72.2 77.6 70.0 - 0.69 - 

SSC-SleepNet (ours) Pz-Oz 195479 90.8 52.7 85.9 87.5 73.2 82.5 78.0 86.4 0.76 1.8 hrs 

SHHS 

DeepSleepNet** [22] [20] C4-A1 324854 85.4 40.5 82.5 79.3 81.9 81.0 73.9 82.6 0.73 14.4 hrs** 

AttnSleep* [22] C4-A1 324854 86.7 33.2 87.1 87.1 82.1 84.2 75.3 84.0 0.78 2.1 hrs 

SeqSleepNet** [22] [23] C4-A1 324854 84.2 47.3 87.2 85.4 88.6 85.6 78.5 85.4 0.80 15.2 hrs** 

SleepEEGNet** [22] [21] C4-A1 324854 81.3 34.4 73.4 75.9 77.0 73.9 68.4 82.7 0.65 6.4 hrs** 

U-Sleep* [83] Majority vote# - 93.0 51.0 87.0 76.0 92.0 - 80.0 - - - 

SeqSleepNet**# [80] [23] C4-A1 1637525 91.8 49.1 88.2 83.5 88.2 87.2 80.2 - 0.82 - 

SeqSleepNet**# [8] [23] C4-A1, EOG, EMG 1637525 91.4 43.3 87.4 82.9 87.3 86.5 78.5 - 0.81 - 

XSleepNet1*# [63] C4-A1, EOG, EMG 1637525 91.6 51.4 88.5 85.0 88.4 87.6 80.7 - 0.83 - 

XSleepNet2*# [63] C4-A1, EOG, EMG 1637525 92.0 49.9 88.3 85.0 88.2 87.5 81.0 - 0.83 - 

SleepTransformer*# [84] C4-A1, EOG, EMG 1637525 92.2 46.1 88.3 85.2 88.6 87.7 80.1  0.83 - 

L-SeqSleepNet*# [80] C4-A1 1637525 93.1 51.1 89.0 84.9 89.8 88.4 81.4 - 0.84  

SSC-SleepNet (ours) C4-A1 324854 86.8 60.5 88.3 90.8 81.5 86.3 81.5 87.4 0.81 2.1 hrs 

SSC-SleepNet# (ours) C4-A1 1637525 93.5 57.8 91.0 90.1 87.8 89.9 84.0 89.5 0.86 12.1 hrs 

HMC 

SSC-SleepNet (ours) F4-M1 137243 83.4 55.2 82.5 87.6 74.9 79.3 76.7 85.4 0.73 1.9 hrs 

SSC-SleepNet (ours) C4-M1 137243 70.5 55.0 81.2 85.9 73.7 76.7 73.3 83.1 0.69 1.9 hrs 

SSC-SleepNet (ours) O2-M1 137243 78.0 53.1 80.2 83.2 70.0 75.4 72.8 82.9 0.68 1.9 hrs 

SSC-SleepNet (ours) C3-M2 137243 78.6 51.8 82.1 86.0 74.9 77.7 74.7 84.1 0.71 1.9 hrs 

Note that, on all datasets, * represents the results reported in previous works, are not compatible for a direct comparison here due to the discrepancies in data split, the number of 

channel used, modelling tasks, etc. ** represents the results reported on second previous works, which may cause different results due to the different environments or parameters, etc., 

the first [ref.] represents the second report work and the second [ref.] represents the original work reports.  #Majority vot e in U-Sleep, that is, the hypnograms were generated using 

predictions from all available EEG-EOG channel combinations within each record. In SHHS dataset,  different models cannot comparation directly due to the different data preprocessing 

or training split, # represents the results reported in previous works in the whole SHHS-5463 dataset (the number of subjects is 5463 and the experimental setup is train/test: 0.7/0,3), U-

Sleep model uses 5767 subjects and the experimental setup is leave-one-out cross validation, and others use SHHS-329 datasets and the experimental setup is 20-fold cross validation. 
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population (a random mix of OSA and non-OSA patients), as 

shown in Table IX. Interestingly, the performance of non-OSA 
patients was significantly lower than in the general population, 

except for stage N1. Possible reasons for this are the following. 

First, the larger dataset size of the general population results in 

better or more stable training, favoring the classes with higher 

data representation. Second, the overnight sleep of OSA 

patients, characterized by frequent apnea events, often 

corresponds to interrupted sleep patterns (e.g. sleep 

fragmentation), which may allow the model to better identify 

these characteristics. We also validated the model on the HMC 

dataset, which includes patients with different sleep disorders. 

The results were clearly worse than those on the other datasets, 

indicating still the general challenge of sleep staging from 
single-channel EEG in patients with sleep disorders. 

Nevertheless, the N1 sleep detection performance (57.8% using 

the C4-M1 channel) on the HMC dataset were consistent with 

that on the other datasets. 

 E. Comparison with State-of-the-art Models 

As presented in Table IX, SSC-SleepNet was able to 

effectively identify different sleep stages, with a higher 

accuracy, MF1 score, and Cohen’s kappa compared with the 

results reported in literature. However, the result in detecting 

N3 or REM sleep was sometimes lower than that using other 

models. For example, the U-Sleep algorithm reported a higher 

REM sleep detection result than our work but at the expense of 

much lower result in NREM sleep detection. When using the 

Pz-Oz channel on the Sleep-EDF-X dataset, we obtained a 

worse detection of N3 sleep compared with that using 

SleepEEGNet while we did clearly better in detecting all the 

other stages. In terms of model performance, the use of a 
complex pseudo-Siamese learning network structure and 

repeated iterations of the adaptive loss function increased 

computational complexity. In particular, the adopted dynamic 

loss required multiple autocorrelation calculations on the input 

data, contributing to the higher computational requirements. As 

a result, the parameters and FLOPs of our model are relatively 

high, making it less suitable for portable and lightweight sleep 

staging applications. This limitation highlights an important 

direction for future work - the development of lightweight 

models that can maintain strong N1 detection performance 

while reducing computational complexity. 

F. Limitations 

There are several limitations in our study. First, we could not 

always directly compare model performance using the same 

channels in the four datasets due to different channels being 

available because of the use of different setups. However, we 

have demonstrated that the proposed algorithm on different 
EEG channels has led to effective sleep staging, indicating its 

robustness against those different EEG channels tested Second, 

we solely conducted comparison experiments between patients 

with an AHI less than 5 and the general population on the SHHS 

dataset. Comparing results in various patient groups would 

require further investigation [87]. In addition, in the HMC 

dataset containing patients with sleep disorders, only the 

electrode phase difference of the standard EEG channel was 

recorded, which may be the main reason why the corresponding 

sleep staging performance was markedly lower than that of the 

other datasets. Third, the hyperparameters of the dynamic loss 

function used in SSC-SleepNet were adjusted based on 
accuracy rather than the kappa score. In sleep analysis, the 

kappa score is preferred because it considers the imbalance of 

different sleep stages throughout the night. However, the 

accuracy can be calculated per sleep stage separately, whereas 

the kappa score always depends on the negative samples as well. 

Therefore, we chose to leverage the per-class accuracy, as it is 

more consistent with the adaptive contrastive loss function 

proposed in this study. Finally, SSC-SleepNet was specifically 

designed for signals collected by PSG devices, which may 

potentially limit its applicability to signals collected using, for 

example, portable or wearable devices, due to, for example, the 

presence of more motion artifacts. When employing a new, 
wearable EEG sensor instead of traditional PSG EEG channels, 

the robustness of our proposed algorithm against noise such as 

motion artifacts should be further verified. Additionally, while 

SSC-SleepNet demonstrated improved N1 prediction, its model 

complexity is relatively high, compared to lighter models such 

as DeepSleepNet-Lite and L-SeqSleepNet. Therefore, future 

research should focus on developing lightweight, noise-

resistant models to facilitate its potential deployment for 

wearable or less-obtrusive EEG-based sleep staging. Third, the 

hyperparameters of the dynamic loss function used in SSC-

SleepNet are adjusted based on accuracy rather than the kappa 
score. In sleep analysis, the kappa score is preferred because it 

considers the imbalance of different sleep stages throughout the 

night. However, the accuracy can be calculated per sleep stage 

separately, whereas the kappa score always depends on the 

negative samples as well. Therefore, we chose to leverage the 

per-class accuracy, as it is more consistent with the adaptive 

contrastive loss function proposed in this study. Finally, SSC-

SleepNet is specifically designed for signals collected by PSG 

devices, which may limit its applicability to signals from 

wearable or non-contact devices due to differences in data 

collection methods and source characteristics. Additionally, 

while SSC-SleepNet demonstrates effective N1 prediction, its 
model complexity is relatively high, resulting in greater 

computational demands compared to lighter models such as 

DeepSleepNet-Lite and L-SeqSleepNet. Future research will 

focus on developing lightweight, noise-resistant models to 

facilitate practical daily sleep monitoring.  

 

VI. CONCLUSION 

The newly developed SSC-SleepNet model demonstrates a 

particular ability to identify informative features using single-

channel EEG data across different temporal and spatial scales 

to achieve accurate classification of sleep stages. This deep 

learning solution outperforms most current models in automatic 

sleep staging, using single-channel EEG signals, and makes 

significant progress in detecting the N1 sleep stage, closely 

matching the accuracy of the PSG-based gold standard of 

manual scoring.  
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