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Abstract— Gold-standard sleep scoring is based on
epoch-based assignment of sleep stages based on a
combination of EEG, EOG and EMG signals. However,
a polysomnographic recording consists of many other
signals that could be used for sleep staging, including
cardio-respiratory modalities. Leveraging this signal variety
would offer important advantages, for example increas-
ing reliability, resilience to signal loss, and application
to long-term non-obtrusive recordings. We developed a
deep generative model for automatic sleep staging from
a plurality of sensors and any -arbitrary- combination
thereof. We trained a score-based diffusion model using
a dataset of 1947 expert-labelled overnight recordings with
36 different signals, and achieved zero-shot inference on
any sensor set by leveraging a novel Bayesian factorization
of the score function across the sensors. On single-channel
EEG, the model reaches the performance limit in terms of
polysomnography inter-rater agreement (5- class accuracy
85.6%, Cohen’s kappa 0.791). Moreover, the method offers
full flexibility to use any sensor set, for example finger
photoplethysmography, nasal flow and thoracic respiratory
movements, (5-class accuracy 79.0%, Cohen’s kappa of
0.697), or even derivations very unconventional for sleep
staging, such as tibialis and sternocleidomastoid EMG (5-
class accuracy 71.0%, kappa 0.575). Additionally, we pro-
pose a novel interpretability metric in terms of information
gain per sensor and show this is linearly correlated with
classification performance. Finally, our model allows for
post- hoc addition of entirely new sensor modalities by
merely training a score estimator on the novel input instead
of having to retrain from scratch on all inputs.

Index Terms— Automatic Sleep Staging, Deep Learning,
Generative AI, Diffusion Models, Score-based Diffusion
Models.
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I. INTRODUCTION

Sleep stage scoring is an essential tool in the clinical assessment
of sleep and the diagnosis of sleep disorders. Traditionally, sleep
staging has relied on overnight polysomnographic (PSG) record-
ings which at least include electroencephalography (EEG),
electrooculography (EOG) and electromyography (EMG). The
accepted gold standard is for experienced human scorers to
perform this sleep staging manually, following the guidelines
of the American Academy of Sleep Medicine (AASM) [1].
Accordingly, each 30-second segment of sleep, known as an
epoch, is scored as belonging to one of five stages: Wake (W),
Rapid Eye Movement (REM), or non-REM (NREM) stages 1-3
based on the visual recognition of established patterns on EEG,
EOG and EMG signals. The representation of a sequence of
sleep stages over the night is called a hypnogram. The visual
analysis of its characteristics, such as the distribution and
continuity of sleep stages help drive clinical interpretation [2].

There are several challenges in sleep scoring, namely its
costs, time requirements, and the need for trained personnel. To
overcome this, automatic sleep scoring based on PSG has been
extensively described in literature. The EEG signal in particular
provides a strong basis for automatic sleep staging. A single
EEG derivation is often enough to reach performance on par
with the human inter-rater agreement [3]. While this alleviates
some of the costs of human scoring, the EEG needs to be placed
above the hairline which can cause patient discomfort, and due
to its vulnerability to environmental noise and motion artifacts,
is less well-suited for ambulatory or prolonged measurements.

To provide an alternative, the measurement and analysis of
surrogate signals has been studied. Surrogate measurements
make use of indirect observations, such as movements often
associated with wakefulness, or expressions of the sleep stages
in autonomic nervous system activity, for example via cardiac
and respiratory sensors. Surrogate modalities often described
in literature include actigraphy, cardiac activity, respiratory
effort, and respiratory flow [4]–[6]. Because there are no
visual sleep scoring rules for these signals, analysis must be
performed automatically. Most successful approaches rely on
machine learning techniques on measurements of one or more
signals, using as training ground-truth sleep stages derived
from a human-scored, simultaneously recorded PSG study.
Many approaches address a simplified sleep staging set-up,
distinguishing only between sleep and wake, or distinguishing
between 4 classes instead of the usual 5, where the N1 and
N2 classes are merged into a joint N1/N2 class [4]–[7].

https://github.com/HansvanGorp/FSDM-supplement
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An unsolved problem remains: between different individual
recordings, and more importantly, between measurement setups,
the combination of available input signals can vary widely. This
can be because of different devices, measurement protocols,
sensors inadvertently being disconnected during the recording,
or due to interference, noise, and artifacts. Some models
described in the literature partially solve this issue and can
perform sleep staging on a range of input signals. For example,
U-Sleep has been trained specifically to work with any
combination of single-channel EEG and single-channel EOG
signals, even when using derivations between electrodes not
recommended by the AASM [8], [9].

However, no proposed system can easily scale up to new
sensors after training on a specific set. Scaling up requires
retraining the entire system and collecting numerous new
recordings with both old and new signals measured simul-
taneously. Given the substantial training data required by deep
learning systems, successive rounds of data collection pose a
practical obstacle to introducing new sensors in practice.

We introduce a deep generative model to accurately and
scalably perform sleep staging using any combination of signal
modalities used to measure sleep, both PSG-derived as well
as surrogate. Such a model can be highly beneficial in clinical
practice, as it has the flexibility to adapt to any circumstance
and recording protocol, while at the same time being robust to
disconnected sensors, missing measurements, and noisy sensors.
Our main contributions are as follows:

• We introduce a novel algorithm based on a Bayesian
factorization of score-based diffusion models, which we
term Factorized Score-based Diffusion Modeling (FSDM).

• We show how FSDM can be leveraged to perform joint
(zero-shot) inference on arbitrary combinations of input
signals while never being trained on them; training only
happens on one signal at a time.

• We provide a natural means of expressing the information
gain from each signal in the FSDM framework.

• We showcase the performance of FSDM on an extensive
list of 36 individual signals and their combinations,
including improved performance in 5-class sleep staging
with several cardio-respiratory modalities.

II. METHODS

A. Factorized score-based diffusion modeling

In the proposed framework, individual networks are trained
separately on each signal modality. Only during deployment
are the models combined into a joint posterior, which allows
zero-shot inference on subjects with arbitrary combinations of
measurement modalities. While the term ‘zero shot’ on the
output side traditionally refers to unseen classes, we use the
term in this manuscript to refer to unseen combinations of
input signals, i.e., a combination of signals that was not seen
during training, as the signals were only trained on separately.

To perform this zero-shot inference using arbitrary combina-
tions of sensors, we use a score-based diffusion model as our
backbone [10]. This requires an estimate of the posterior score.
Our key result is that the posterior score is well estimated by:

∇y log p
(
y|X(1:N)

)
︸ ︷︷ ︸

posterior

≈ ∇y log qθ(0)(y)︸ ︷︷ ︸
global prior

+
1

N

N∑
i=1∇y log qθ(i)

(
y|x(i)

)
︸ ︷︷ ︸

individual likelihood

−∇y log qθ(i)(y)︸ ︷︷ ︸
individual prior

 , (1)

where we have factorized the posterior score into its Bayesian
components. In equation (1), y denotes the hypnogram, X(1:N)

denotes the combination of input data coming from N different
sensors, ∇. log p(.) denotes a true score, and ∇. log qθ(i)(.)
denotes a score as estimated by a neural network with
parameters θ(i), which we will simply call a score-network
for the sake of brevity. Each score-network is specific to an
input signal with index i, for example, i = 1 could denote a
respiratory effort signal and i = 2 a cardiac signal.

A crucial insight from equation (1) is that the posterior score
can be inferred a-posteriori from individually learned likelihood
and prior scores. Each of these individual scores is estimated
by a score-network trained solely on its own sensor data using
denoising score matching techniques. The score-networks are
agnostic to the existence of other types of measurement data.
The rest of this subsection will now provide a full derivation
of the FSDM algorithm. We will use the following notation:

• Let y ∈ R5×E be a hypnodensity, i.e., the sleep stage
probabilities of size 5 stages by number of epochs E.

• A hypnogram h ∈ [W,N1, N2, N3, R]E can be ex-
pressed as a hypnodensity y through one-hot encoding.

• Let x ∈ RE·F ·30 be a signal measured concurrently with
the hypnogram at sampling frequency F .

• A collection of input signals can be written as:
X(1:N) = [x(1),x(2), . . . ,x(N)].

1) Factorized posterior score: We are interested in estimating
the probability distribution of hypnograms given a set of mea-
surements signals, expressed as p

(
y|X(1:N)

)
. This estimation

problem can be re-written using Bayes’ rule as:

p
(
y|X(1:N)

)
=

p(y)

p
(
X(1:N)

)p(X(1:N)|y
)
. (2)

By assuming that the individual input signals x(i) are condi-
tionally independent given y, we arrive at the Naive Bayes
estimator:

p
(
y|X(1:N)

)
=

p(y)

p
(
X(1:N)

) N∏
i=1

p
(
x(i)|y

)
. (3)

Bayes’ rule can then be applied a second time, but now to the
individual likelihood terms, to arrive at:

p
(
y|X(1:N)

)
=

p(y)

p
(
X(1:N)

) N∏
i=1

p
(
x(i)

)
p(y)

p
(
y|x(i)

)
. (4)

Equation (4) contains many difficult to calculate terms that do
not depend on y, namely p

(
X(1:N)

)
and p

(
x(i)

)
. To get rid

of these, we can express the equation as a score:
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∇y log p
(
y|X(1:N)

)
= ∇y log p(y)+

N∑
i=1

(
∇y log p

(
y|x(i)

)
−∇y log p(y)

)
. (5)

It is thus possible to estimate the posterior score using only the
individual conditional scores and the prior score. Of remark are
two properties of equation (5). Firstly, if there is only 1 signal
(N = 1), then it reads as a simple identity. Secondly, the term
inside the summation,

(
∇y log p

(
y|x(i)

)
−∇y log p(y)

)
, can

be interpreted as: what additional information do we learn
about y from x(i), that was not already in the prior?

2) Score-based diffusion modeling: The posterior score
calculated using equation (5) can be used to draw samples from
p
(
y|X(1:N)

)
by leveraging score-based diffusion modeling

[10]. This type of generative model has garnered a lot of
attention recently, due to its ease of training, stability, and
high-fidelity outputs. We make use of the unifying framework
proposed by Karras et al. [11], who demonstrate that many
different diffusion models are special cases of their framework.
This enables easier expansion of the proposed FSDM model
to other diffusion models in future work. Here, we briefly
introduce score-based diffusion models as detailed by Karras
et al. [11].

In score-based diffusion models, one always starts from
an easy to sample latent distribution which is subsequently
transformed into the desired data distribution. Following the
literature [10]–[12], a Gaussian latent distribution was chosen
as starting point, y0 ∼ N (0, σ2

maxI). The factorized posterior
score was then used to progressively move towards more likely
outputs in M discrete steps, until we approximated yM ∼ pdata.
This ‘movement’ is described by the following probability flow
ordinary differential equation (ODE):

dy = −σ̇(t)σ(t)∇y log p
(
y|X(1:N)

)
dt, (6)

where σ(t) is known as the diffusion noise schedule1, which
defines the diffusion noise level at time t, and σ̇(t) is the first
derivative with respect to t. Note that the probability flow ODE
works both in forward as well as reverse time. To link the
M discrete steps to the continuous time t, we use the time
schedule as proposed by Karras et al. [11]:

tm =

{(
σ
1/ρ
max + m

M−1 (σ
1/ρ
min − σ

1/ρ
max)

)ρ

if m ̸= M

0 if m = M
(7)

We empirically choose σmin = 0.0001, σmax = 40, ρ = 7,
and M = 32. The diffusion noise schedule is simply chosen
to be σ(t) = t, σ̇(t) = 1.

3) Learning the individual conditional scores: In order to
make use of equations (5) and (6), estimates of the individual
conditional scores are needed. To that end, we employ denoising
score-matching [12]. In this framework, the scores are only
estimated at chosen time steps t and corresponding diffusion
noise levels σ(t) by using a denoising function in conjunction

1Please note that the diffusion noise is a mathematical construct needed to
train diffusion models, it has no relation to physical sensor noise that might
be present in measurements. To avoid confusion, we will refer to the noise
needed to train a diffusion model as ‘diffusion noise’.

with Tweedie’s approximation [13]. This approximation makes
it much simpler to train score functions, as one only needs
to train on a straight-forward denoising objective, which is
easier to estimate than generic scores. Following Tweedie’s
approximation [13], the difussion noise-level specific score
estimates can be written as:

∇y log p
(
y|x(i)

)
≈ sθ(i)

(
y,x(i), σ

)
≈

(
Dθ(i)

(
y,x(i), σ

)
− y

)
/σ2, (8)

where Dθ(i) is a denoising function implemented with neural
network parameterized by θ(i) and specific to the signal with
index i. To train the denoising networks, Dθ(i) , we require a
dataset of ground truth hypnograms, y, with simultaneously
acquired signals, X(1:N). We call the dataset distribution as:

X(1:N),y ∼ p
(1:N)
data . (9)

In practice, not all signals will be measured in each recording.
For example, in one recording in the dataset, sensors A-B-C
might have been used, while for another recording, sensors
B-C-D might have been used. To overcome this issue, each
denoising network is trained only on the subset of recordings
where its sensor was applied. We will denote these subsets as:

x(i), y ∼ p
(i)
data (10)

Since y is categorical, we train the denoising networks with
the expected cross entropy loss J over a range of σ values:

Ji = −E
x(i),y∼p

(i)
data

En∼N (0,σ2I)Eσ[

y log
(
Dθi

(
y + n,x(i), σ

))
]. (11)

Throughout the training process, the diffusion noise level σ
is drawn randomly using a log-normal distribution: ln(σ) ∼
N (0.2, 1.42). This biases the denoiser to minimize the loss for
medium levels of diffusion noise, i.e. the diffusion noise level
in the middle of the sampling trajectory.

In summary, the individual conditional scores are approxi-
mated using denoising neural networks. These denoising neural
networks are trained on the subset of recordings where their
corresponding signals were measured. The loss function is the
cross entropy loss, where the input to the denoiser is not only
the measured signal x, but also a noisy version of the ground
truth hypnogram y + n as well as the diffusion noise level σ.

4) Learning the prior scores: Next to the individual condi-
tional scores, we also need to estimate the prior scores. The
prior score shows up two separate times in equation (5). The
first time as a ‘global’ prior, since it is counted at the start, and
the second time as an ’individual’ prior, since it is subtracted
from an individual likelihood score:

∇y log p
(
y|X(1:N)

)
= ∇y log p(y)︸ ︷︷ ︸

global prior

+

N∑
i=1

∇y log p
(
y|x(i)

)
︸ ︷︷ ︸

individual likelihood

−∇y log p(y)︸ ︷︷ ︸
individual prior

 . (12)

As we discussed in the previous section, the dataset used for
training does not have all signals available for all recordings.
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Fig. 1. Visualization of the sampling process for an FSDM model. (A) From a current point ym we estimate two likelihoods, two priors, and one
global prior. Combining them all leads to a denoised estimate outside the hypnodensity manifold, which is corrected using a projection step τ(). (B)
Evolution of a sample over the last three time-steps. The end-estimate progressively moves from the hypnodensity manifold to the one-hot shell.

This has some implications for the prior score estimation.
Specifically, if an individual likelihood score carries no new
information it is desirable for the individual prior to exactly
cancel it out, such that:

∇y log p
(
y|x(i)

)
︸ ︷︷ ︸

individual likelihood

= ∇y log p(y)︸ ︷︷ ︸
individual prior

if I(y;x(i)) = 0, (13)

Where I(.; .) denotes mutual information. In order to achieve
this behavior, we estimate each individual prior in a similar
vein as equation (8) as:

∇y log p(y)︸ ︷︷ ︸
individual prior

≈ sθ(i) (y,0, σ) ≈
Dθ(i) (y,0, σ)− y

σ2
, (14)

where we replaced the input signal x(i) using a vector of
zeroes. Additionally, we also supplement the training by
augmenting the loss as specified in equation (11). With
probability paugment = 0.5 we partially replace the input signal
x(i) with some zeroes, and with probability pzero = 0.1 we
completely replace it with zeroes. This ensures that we can use
each signal specific denoising network both as a conditional
likelihood score estimator, as well as an individual prior
estimator. The values of 0.1 and 0.5 were chosen before training
and not optimized in any way.

Contrary to the individual priors, the intuition behind the
global prior is that it should be trained on the largest set of
possible hypnograms. To that end we train one separate global
prior on the entire training dataset, since it is not constrained
by sensor availability. The global prior is equal to:

∇y log p(y)︸ ︷︷ ︸
global prior

≈ sθ(0) (y,0, σ) ≈
Dθ(0) (y,0, σ)− y

σ2
, (15)

Where Dθ(0) is trained using the following loss:

J0 = −E
0,y∼p

(0)
data

En∼N (0,σ2I)Eσ[

y log (Dθ(i) (y + n,0, σ))], (16)

where 0, y ∼ p
(0)
data covers the entire dataset. In summary,

the training of the prior networks are special cases of the
conditional likelihood networks where the input signals x are
(partially) set to zero. Pseudo-code of the training loop is given
in Supplement K.

5) Sampling from an FSDM: We can now rewrite equation
(5) to use the estimated scores from (8), (14), and (15):

Dall

(
y, X(1:N), σ

)
= Dθ(0) (y,0, σ)+

λ

N∑
i=1

(
Dθ(i)

(
y,x(i), σ

)
−Dθ(i) (y,0, σ)

)
, (17)

where Dall is the combined denoising function. Additionally,
we have introduced a weighting term λ that specifies the
importance of the likelihood terms with respect to the prior,
which is common practice in both Bayesian inference and
diffusion guidance [14], [15]. We empirically choose λ = 1/N ,
which gives rise to the desirable property that adding the same
signal any number of times leads to the same posterior score.

In practice, combining score estimates from multiple models
can lead to instability in the sampling process, as the current
estimate at a time-step can ‘fall off the manifold’. A lot of
research has been done on this effect for image restoration and
multiple solutions have been found [10], [16]]-[[17]. However,
these methods assume there is some (partially) sampled data,
coupling the diffusion process via a likelihood function, which
is not the case for our setup as the hypnograms are completely
unknown a-prior. We thus propose a new manifold projection
step suited for categorical data. Since we know that on the
denoised end-estimate manifold, all classes should count up to
a total of probability 1, we use:

τ(y) = y/

5∑
j=1

yj . (18)

In other words, we re-normalize the hypnodensity to follow
the hypnodensity manifold constraint.

After applying the manifold projection step, we can use
the end-estimate together with Tweedie’s formula to get the
posterior score estimate as:

p
(
y|X(1:N)

)∣∣∣
σ
≈

(
τ
(
Dall

(
y, X(1:N), σ

))
− y

)
/σ2.

(19)
Following [11] we employ Heunn’s second order method

to solve the ODE from equation (6) using the posterior score
estimate of equation (19). The pseudo-code for this sampling
algorithm is shown in Supplement K. A visual overview of
the FSDM rule is shown in Fig.1.
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To generate the final hypnograms that are shown to the user
and which were compared to the ground truth, we sample 64
times from the FSDM algorithm. This results in 64 different
realizations of the posterior distribution y ∼ pθ(y|X), i.e.,
hypnograms that are likely given the input data. The end result
is then calculated as the majority vote of these hypnograms:

ĥ = arg max Ey∼pθ(y|X) [y] , (20)

where the arg max is applied along the first dimension of
y ∈ R5×E , resulting in a hypnogram with categorical sleep
stages ĥ ∈ [W,N1, N2, N3, R]E . Additionally, the 64 samples
are used to separately calculate the overnight sleep statistics,
similar to previous work [18]. The final value for each overnight
statistic for each recording is then calculated as the median of
the individual realizations:

stat = mediany∼pθ(y|X) [fstat(y)] , (21)

where fstat refers to the function that calculates the overnight
statistic of interest from a hypnogram, e.g. total sleep time or
wake afer sleep onset.

B. Information
We hypothesize that the factorized combination rule from
equations (5) and (17) allows for the evaluation of how much
each individual measurement source contributes to the end-
result, possibly constituting a novel interpretability metric. This
can be seen through the lens of ‘information’ as defined by
Caticha 2011: “Information is what forces a change of rational
beliefs” [19]. In our case, the ‘rational belief’ can be interpreted
as the prior score, whereas the amount of change is expressed
as the difference between the likelihood score and the prior
score.

There are different domains and distance functions that we
could use to compare the likelihood and the prior in order to
express the amount of information gain. We here choose to
follow recent literature on hypnodensity, which proposes the
use of the cosine distance between the two vectors of class
probabilities at each epoch [20], [21].

To express the amount of information, we calculate the
expected cosine distance between likelihood and prior over the
entire sampling trajectory:

bi = Ey0

[
1

M

M∑
m=1

(
cos dist.

(
Dθ(i)

(
ym,x(i), σ(tm)

)
,

Dθ(i)

(
ym,0 , σ(tm)

)))]
, (22)

where we take the expectation over different initial states of the
sampling process y0 ∼ N (0;σ(t0)

2I). Additionally, bi is the
information for the signal with index i, and ‘cos dist.’ is the
cosine distance between the two hypnodensities as estimated
by the prior and likelihood denoising functions. The resulting
information will be of similar length as the hypnogram and
takes values between 0 and 1, i.e. bi ∈ [0, 1]E . An information
of 1 means that the likelihood and prior completely disagreed
over the entire sampling process, and a 0 means that they
always agreed, in which case one could just as easily not
measured the signal at all.

TABLE I
DEMOGRAPHIC PARAMETERS FOR THE TWO DATASETS. ‘#’ REFERS TO

NUMBER, AND ‘STD.’ REFERS TO THE STANDARD DEVIATION.

Parameter Total Train Val Test
Recordings [#] 1851 1281 97 473

[#] 710 499 30 181Female [%] 38.4 39.0 30.9 38.3
[mean] 51.0 50.7 52.5 51.5Age [std.] 15.7 16.1 15.7 14.7
[mean] 25.9 25.8 25.9 26.4BMI [std.] 8.2 8.2 8.9 8

[#] 241 163 12 66

SO
M

N
IA

[2
2]

PAP usage [%] 13.0 12.7 12.4 14.0
Recordings [#] 96 66 3 27

[#] 60 44 2 14Female [%] 62.5 66.7 66.7 51.9
[mean] 36.0 35.9 33.7 36.5Age [std.] 13.5 13.3 12.7 14.1
[mean] 24.3 24.0 23.7 25.2

H
ea

lth
B

ed
[2

3]

BMI [std.] 3.2 2.9 3.8 3.7

TABLE II
PRIMARY SLEEP DISORDER DIAGNOSES OVER THE THREE SPLITS. NOTE

THAT MANY SUBJECT HAD MULTIPLE PRIMARY SLEEP DIAGNOSES.

Diagnosis Total Train Val Test
Insomnia disorders 613 418 29 166
Obstructive sleep apnea 1037 698 59 280
Central sleep apnea 42 26 2 14
Treatment emergent- 6 6 0 0central sleep apnea
Hypoventilation 8 6 0 2
Narcolepsy 31 21 0 10
Other hypersomnolence-
disorders 54 40 3 11

Insufficient sleep syndrome 66 52 3 11
Circadian rythm disorder 46 34 4 8
NREM Parasomnias 115 85 5 25
REM sleep behavior disorder 122 84 8 30
Other REM Parasomnias 55 47 2 6
Other Parasomnias 45 31 3 11
Restless legs syndrome and/or
Periodic limb movement disorder 268 198 10 60

Other movement disorders 58 37 3 18
Other sleep disorders 16 11 2 3
No primary sleep diagnosis-
and/or normal variants 99 76 5 18

Healthy 96 66 3 27

C. The SOMNIA and HealthBed datasets

To evaluate the proposed method on a large set of signals we
leveraged the Sleep and OSA Monitoring with Non-Invasive
Applications (SOMNIA) dataset [22] and the HealthBed dataset
[23]. Both datasets comprise overnight polysomnographic
recordings captured at Sleep Medicine Center Kempenhaeghe.
The SOMNIA data comes from a diverse clinical population
(1851 recordings), while the HealthBed dataset comes from
healthy participants without sleep disorders (96 recordings). We
included all recordings obtained in the period between 2017-
01-01 and 2023-10-10 and we excluded pediatric recordings.
No other exclusion criteria were applied. Note that we also
included recordings where a subject made use of a PAP device
during the night from which we measured PAP flow, this was
the case for 241 recordings in the SOMNIA dataset.

We randomly split the recordings into 1347 train, 100
validation, and 500 hold-out test recordings. We chose to use a
larger percentage of recordings in the hold-out test set than is
typical to increase the diversity of pathologies in the hold-out
test set. Table I shows the demographic data of each of the
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three sets. The distribution of primary sleep disorder categories
is shown in Table II. Note that many subjects had multiple
sleep disorder diagnoses, so the columns add up to more than
the total number of recordings in each split. Supplement G
provides a full breakdown per specific diagnosis.

Both the SOMNIA and HealthBed studies adhered to the
guidelines of the Declaration of Helsinki, Good Clinical
Practice, and current legal requirements. Both studies were
reviewed by the Maxima Medical Center medical ethical
committee, Veldhoven, the Netherlands (SOMNIA: N16.074,
HealthBed: NL63360.015.17), by the institutional review board
of Philips (Internal Committee on Biomedical Experiments,
Eindhoven, The Netherlands) and by the institutional review
board of Sleep Medicine Centre Kempenhaeghe (Heeze, The
Netherlands). The data analysis protocol for this study was
approved by the institutional review board of Sleep Medicine
Centre Kempenhaeghe (Heeze, The Netherlands), reported
under CSG.KH.2023.24 and approved on 13 November 2023.
D. Signal extraction

A total of 36 signals were extracted from the recordings. These
were grouped into 18 clusters of similar type, which we will
refer to as a ‘signal group’. For example, the signals F3-M2,
F4-M1, C3-M3, F4-M1, O1-M2, and O2-M1 were all grouped
into the EEG type, and the signals from the abdominal belt
and the thoracic belt were grouped into a common Respiratory
Inductance Plethysmography (RIP) belt type. A full breakdown
of each signal and its filtering settings can be found in
Supplemental information J. The PAP flow signal was measured
during overnight recordings where the subject used a PAP
device, which was the case for 241 recordings, see Table I.
Subjects were allowed to bring their personal PAP device,
resulting in a large variety of types and manufacturers. The
types of PAP included in the study were continuous PAP
(CPAP) (208), auto-adjusting PAP (APAP) (23), adaptive servo
ventilation (ASV) (2), and Bi-Level PAP (8).

The SOMNIA set reflects the patient population seen at
the Kempenhaeghe clinic, where CPAP is the most commonly
applied PAP modality. ASV and Bi-Level PAP have specific
clinical indications, often in more complex clinical cases, and
the low count may be partly due to the fact that these patients
were less often invited to participate in the SOMNIA study.
Typically, PAP devices allow for some type pressure or flow
readout. To homogenize this readout between the different
devices, a common third-party sensor was attached to the
breathing tube of the PAP device, called the pneumo flow
(Braebon, Canada). This readout is used in the study as the
‘PAP flow’ signal.

Recordings of all sensors were made using a dedicated
recording and amplification system (Grael PSG, Compumedics,
USA). The individual sensors used for each signal are described
in detail in the SOMNIA protocol paper [22]. We applied
a simple preprocessing pipeline described in Supplement J.
No further filtering or other preprocessing was applied. The
scoring of the ground truth sleep stages was done by expert
scorers using the most recent AASM criteria at the time of
each recording, which were performed in the period between
2017-01-01 and 2023-10-10.

E. Neural network architecture

Our method is agnostic to the exact architecture used for each
denoising neural network. In this manuscript, we leverage the
DDPM++ model as implemented by Karras et al. [11], and
modified to work on 1D timeseries in our previous work on
EOG-driven sleep staging [24]. In this section, we highlight the
most important modifications made to the original DDPM++
model, see Supplement I for a complete overview of the model
implementation.

Firstly, The model takes as input not only the current
sample point ym−1 and diffusion noise level σ(tm), but
also a conditioning created from the measured signal as
c(i) = enc(x(i)). This conditioning is of the same size as ym−1

and appended channel-wise to it as input to the DDPM++ model.
The conditioning networks, enc(), are implemented using the
ResNet blocks that make up the backbone of the DDPM++
model. Using 5 levels, with 2 ResNet blocks per level, and a
final strided convolution, these conditioning networks compress
the input signals x(i) ∈ R1792·30·128 to conditioning vectors
c(i) ∈ R1792×16, i.e. a length of 1792 with 16 channels. Note
that the ResNet blocks typically use a timestep embedding, but
these are not added to the epoch encoder. This speeds up the
sampling process, as the epoch encoder only needs to be run
once, and its output context vector can be cached.

Secondly, the DDPM++ model makes use of self-attention,
to which we added positional encoding using sine-cosine em-
bedding, creating a transformer encoder layer. The transformer
architecture enables the model to learn the temporal relations
within and between the signals and hypnograms.

Thirdly, we adapted DDPM++ to work on 1D time-series,
using 1D convolutions of kernel size 7 with 32 channels. We
used 4 resolution levels with a down-sampling stride of 4. We
applied a transformer layer at all resolution levels.
F. Metrics

To evaluate the performance of the FSDM framework, we
use the average accuracy, Cohen’s kappa, and the macro F1
score. Additional metrics, such as the unweighted average recall
(UAR), are provided in supplemental material B. We calculate
each metric per recording, to subsequently average them over
all recordings. This is done to ensure that shorter recordings
count equally to the final result as longer recordings.

To compare the overnight statistics from FSDM to the
ground truth overnight statistics, we use Bland-Altman plots.
These plots visualize the agreement by plotting the differences
against their averages. Additionally, the bias and 95% limits
of agreement are calculated to identify any systematic offset
or significant disagreement.

To quantitatively evaluate our novel interpretability metric
based on information gain, we calculate the average information
gain for each single-sensor setup and compare it to the
classification performance on the hold-out test set. We assess
the correlation between performance and information gain using
Pearson’s correlation. Additionally, we evaluate the effects of
noise and missing data by removing signal segments, replacing
them with zeros, or adding Gaussian noise at different signal-
to-noise ratios (SNRs). The previously fitted linear relationship
is applied to this new experiment to test its robustness.
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TABLE III
AVERAGE HOLD-OUT TEST SET METRICS OF ALL MODELS FOR FULL FIVE-CLASS SLEEP STAGING. COLORED BOXES INDICATE SIGNAL COMBINATIONS,

WITH THE INDENTATIONS SIGNIFYING WHICH SIGNALS WERE PART OF THE COMBINATION. ACC: ACCURACY, MF1: MACRO F1 SCORE, PPG:
PHOTOPLETHYSMOGRAPHY, SCM: STERNOCLEIDOMASTOID, FDS: FLEXOR DIGITORUM SUPERFICIALIS, IHR: INSTANTANEOUS HEART RATE, IBR:

INSTANTANEOUS BREATHING RATE.
Five-class staging

Signal (combinations) Acc [%] Kappa [-] MF1 [-]
All PSG electrodes 85.9 0.793 0.813
| All odd EEG electrodes 85.5 0.789 0.810
| | F3-M2 (EEG) 85.6 0.791 0.810
| | C3-M2 (EEG) 85.3 0.787 0.809
| | O1-M2 (EEG) 83.4 0.760 0.785
| Recommended PSG electrodes 86.3 0.799 0.819
| | All even EEG electrodes 85.8 0.794 0.813
| | | F4-M1 (EEG) 85.5 0.790 0.808
| | | C4-M1 (EEG) 85.5 0.791 0.810
| | | O2-M1 (EEG) 83.8 0.764 0.790
| | E2-M2 (EOG) 85.0 0.784 0.806
| | E1-M2 (EOG) 84.3 0.776 0.801
| | Chin1-ChinZ (EMG) 74.9 0.630 0.676
| Chin2-ChinZ (EMG) 74.9 0.631 0.677
| Chin1-Chin2 (EMG) 74.5 0.624 0.672
HSAT expanded 79.0 0.697 0.729
| HSAT reduced 78.3 0.686 0.715
| | Nasal cannula 76.5 0.661 0.695
| | Finger PPG 75.1 0.640 0.681
| Thoracic belt 76.3 0.657 0.708
HSAT expanded 78.5 0.687 0.722
| HSAT reduced 77.7 0.674 0.707
| | thermistor 72.9 0.603 0.652
| | ECG 76.9 0.669 0.706
| Thoracic belt 76.3 0.657 0.708
HSAT expanded 78.2 0.678 0.704
| HSAT reduced 76.4 0.652 0.684
| | PAP flow 69.5 0.562 0.610
| | Finger PPG 75.1 0.640 0.681
| Thoracic belt 76.3 0.657 0.708

Five-class staging
Signal (combinations) Acc [%] Kappa [-] MF1 [-]
HSAT reduced 77.6 0.676 0.710
| Nasal cannula 76.5 0.661 0.695
| IHR from finger PPG 71.8 0.597 0.651
HSAT reduced 74.9 0.626 0.653
| IBR from PAP flow 69.2 0.538 0.581
| IHR from finger PPG 71.8 0.597 0.651
Left Leg and SCM 71.0 0.575 0.621
| Left Leg (EMG) 66.9 0.526 0.586
| Left SCM (EMG) 66.2 0.502 0.575
Right Leg and SCM 70.3 0.565 0.616
| Right Leg (EMG) 66.7 0.523 0.582
| Right SCM (EMG) 67.0 0.517 0.572
Left Leg and FDS 67.4 0.532 0.599
| Left Leg (EMG) 66.9 0.526 0.586
| Left FDS (EMG) 63.7 0.482 0.566
Right Leg and FDS 68.0 0.540 0.604
| Right Leg (EMG) 66.7 0.523 0.582
| Right FDS (EMG) 63.2 0.476 0.560
Abdominal belt 76.4 0.661 0.712
Snore microphone 72.1 0.597 0.654
IHR from ECG 70.1 0.571 0.634
IBR from RIP thorax 70.0 0.564 0.606
IBR from RIP abdomen 69.9 0.563 0.605
SpO2 68.7 0.542 0.592
IBR from nasal cannula 66.9 0.521 0.577
IBR from Thermistor 65.4 0.497 0.557
Suprasternal notch 63.1 0.464 0.546
IBR esophageal pressure 59.0 0.419 0.504
IBR Suprasternal notch 58.5 0.394 0.489
Esophageal pressure 55.5 0.373 0.485

G. Additional comparison on Sleep-EDF expanded

To test the proposed FSDM model on a different dataset
and compare it to literature, we applied our model to the
EDF expanded dataset from 2018 [25], [26]. We used the
Sleep Cassette set, which consists of 78 healthy sleepers who
underwent 2 consecutive nights of recording. Each recording
lasts up to 20 hours, and subjects wore a modified Walkman-like
cassette-tape recorder that measured several signals at sampling
rates of 100 Hz or 1Hz. To align with our methodology, we
only used the signals measured at 100 Hz, which are: EEG Fpz-
Cz, EEG Pz-Oz, and Horizontal EOG. Scoring was performed
by experts following the Rechtschaffen & Kales rules [27]
which were adapted to the AASM standard by merging stages
S3 and S4 into N3. Furthermore, epochs scored as ’Movement
Time’ were disregarded when calculating performance metrics.
Following the literature, the recordings were cropped to ±30
minutes around the subject’s sleep [28].

We tested two approaches on this dataset. First, we tested
direct application, where we directly used the model weights
trained on SOMNIA and HealthBed on Sleep-EDF Expanded.
Second, we experimented with training our model from scratch.
Following the literature, we applied 10-fold cross-validation,
constantly leaving 7-8 subjects out for hold-out testing. We
also left one other fold out as a validation set and trained on
the remaining 8 folds. We trained models on each of the three
signals: EEG Fpz-Cz, EEG Pz-Oz, and Horizontal EOG.

III. RESULTS

We evaluated the proposed method in terms of agreement
with the human scored hypnogram, testing each of the 36
signals individually and when used in combinations. Table III
shows the resulting 5-class performance metrics on the test set.
Supplement B shows additional results for other setups and
metrics like 4-class sleep staging and UAR.

The resulting metrics for the single-channel EEG and EOG
models are the highest out of all the evaluated signals, e.g.
achieving accuracies between 83.4% and 85.6%, indicating
that any of these signals on their own enables high quality
sleep staging. Using these neurological signals together further
improves performance, with the highest accuracy of 86.3%
achieved when using the combination of signals for sleep
staging recommended by the AASM [1].

Table III also shows the results for several signal com-
binations typically available with home sleep apnea tests
(HSATs) [1]. These were split into reduced HSATs, which
combine a cardiac signal with a respiratory flow signal, and
expanded HSATs, which add a respiratory effort signal as well.
We observe that using these signals in combination leads to
better sleep staging performance as compared to using each of
these signals on their own. Furthermore, the expanded HSATs
improve upon their respective reduced sets, indicating that the
respiratory effort signal further supplements the information
available in the cardiac and respiratory flow signals. Similar
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Fig. 2. Qualitative examples of using five different signal combinations on a healthy subject (left column), and on a subject with narcolepsy type 1
(right column). The 5-class accuracy on each recording is listed between brackets. The red bars denote REM sleep.

results were found when combining two EMG signals, where
the combination results in higher accuracy than each of the
signals individually. Please see Supplement N for a comparison
of our HSAT perfromance to those reported in literature.

Qualitative results for a subset of the signal (combinations)
is shown in Fig. 2, which shows the results for a healthy subject
and one with narcolepsy type 1 who displayed a sleep onset
REM period (SOREMP), which is one of the diagnostic criteria
of that sleep disorder [29]. These examples were selected to
illustrate performance on both healthy sleep and a sleep disorder
that manifests in the hypnogram. Table III and Fig. 2 show
that unconventional signals can also be leveraged to perform
sleep staging, albeit at a lower accuracy. For example, the
SpO2 signal reaches an average 5-class accuracy of 68.7%
and reasonably captures the overall shape of the hypnograms
in Fig. 2. It however misses the SOREMP in the subject
with narcolepsy of Fig. 2. The more conventional signal
combinations fare much better in this regard, with especially
the EEG combination clearly detecting the SOREMP.

Fig. 3 and Fig. 4 show two evaluations of the estimation
of the overnight sleep statistics. Fig. 3 displays the Bland-
Altman plots that result form estimating the overnight sleep
statistics over all recordings in the hold-out test set using
the AASM recommended PSG set-up as input. Fig. 4 shows
four Bland-Altman plots for specific combinations of overnight
sleep statistic and input signal(s) evaluated only on the subjects
in the hold-out test set with a certain disorder, which were
chosen to highlight relevant use-cases in sleep medicine and
research. For example, our method is able to measure the total
sleep time for subjects with obstructive sleep apnea (OSA)
using an HSAT, a parameter that is typically not captured by
that measurement setup. We also show wake after sleep onset
(WASO) estimation for insomnia subjects with a finger PPG,
REM onset latency for narcolepsy subjects using a PSG set-

up, and time in REM for subjects with REM sleep behavior
disorder (RBD) measured with a single-channel EEG.

In general, the proposed method displays low bias and high
agreement. Some outliers can be observed in the estimation of
sleep onset latency and REM onset latency. These happen due
to the all-or-nothing nature in the estimation of these statistics.
For example, if a period of REM is missed by the method the
REM onset latency will be postponed by an entire sleep cycle
leading to over-estimations in the order of 100 minutes, while
if the method (falsely) detects a period of REM sleep an entire
cycle earlier, this leads to under-estimations. These outliers do
not mean that the assembled hypnogram is not reliable, as the
other overnight statistics are not impacted by this effect and
epoch-to-epoch agreement with the ground truth is high.

The correlation between the average information gain for
each single-sensor setup and the classification accuracy on the
hold-out test set is shown in Fig. 5 on the left. A strong linear
correlation was found between these two metrics (Pearson’s
correlation coefficient of 0.91). The effects of noise at different
SNRs and the replacing of segments with zeroes for the ECG
signal are shown in Fig. 5 on the right. The linear fit as
found for the sensors still held for the retrospective addition
of these artifacts, as direct application of this line achieves a
Pearson’s correlation coefficient of 0.90. Supplement E shows
this experiment with Cohen’s kappa and the F3-M2 signal.

A qualitative example of the information gain metric is shown
in Fig. 6, which displays the information gain per epoch when
using PAP flow and finger PPG for a subject with obstructive
sleep apnea (OSA). Another example for cannula with PPG is
shown in supplemental information F. The information gain
is calculated as the difference between the signal likelihood
and the prior, where the prior estimates the probability of a
hypnogram as compared to hypnograms seen in the training
set. Samples from the prior are shown in Supplement D.
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Fig. 3. Bland-Altman plots for the overnight sleep statistics as predicted by the recommended PSG setup over all recordings in the hold-out test set.
The limits of agreement are given at the 95% confidence interval. A positive y value indicates an overestimation by our model with respect to the
gold-standard, while a negative value indicates an underestimation.

0 200 400
total sleep time [min]

50

0

50

100

150

y
=

pr
ed

ic
tio

n
re

fe
re

nc
e

 u
nd

er
 e

st
im

at
io

n 
/ o

ve
r e

st
im

at
io

n Bias: 1.70
Upper Limit: 51.58
Lower Limit: -48.19

0 100 200
wake after sleep onset [min]

50

0

50

100

150

200
Bias: -1.42
Upper Limit: 60.77
Lower Limit: -63.61

0 100 200
REM onset latency [min]

150

100

50

0

50

100

150 Bias: 9.90
Upper Limit: 158.15

Lower Limit: -138.35

20 40 60 80 100
time in REM [min]

20

0

20

40

60 Bias: 2.54
Upper Limit: 34.99

Lower Limit: -29.91

x = (prediction + reference)/2

Fig. 4. Bland-Altman plots for four combinations of sleep statistics, disorders, and input signals. Limits of agreement are at the 95% confidence
interval. From left to right: total sleep time for OSA (HSAT: Nasal Cannula + finger PPG + Thoracic Belt), WASO [min] for insomnia (finger PPG),
REM onset latency [min] for narcolepsy (recommended PSG setup), and time in REM [min] for RBD (single channel EEG: F4-M1).
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Fig. 6. The proposed method is robust to the disconnection of sensors. Left, output of using the PAP flow and finger PPG signals over the entire
night. Right, artificially created example of what would happen if the user took off their PAP device halfway through the night at 2:15 hours. Bottom
row, our novel interpretability metric in terms of per-signal information gain, calculated as the difference between each signal’s likelihood and prior. It
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Fig. 6 shows that the information gain is low when the
prediction coincides with the prior, for example when predicting
wake at the start of the recording or N2 during the night, while
information gain is high when it departs from the prior, for
example when predicting a long sequence of wake in the middle
of the night or a period of N3 at the end of the night.

Similar to the segment of zeroes as tested and illustrated
in Fig. 5, a post-hoc simulation of sensor disconnection was
introduced into the recording. This result is shown in the right
column of Fig. 6. Here, we artificially simulated the scenario
where the user of a PAP device takes off their mask during the
night, in this case at 2:15 hours, while keeping the PPG device
connected. The model elegantly handles this situation and is
still able to perform adequate sleep staging, even with such a
sensor disconnection. From the information gain plots in the
last row of Fig. 6, it can also be observed how the information
gained from the PAP flow signal goes to zero in the second half
of the night, except for the final awakening, as the model has
learned to correlate switching off of devices with awakenings.
We can observe that the sleep staging prediction does suffer in
quality from the sensor disconnection, as it for example misses
the very last N3 and REM periods between 6:00 and 7:00.

Table IV shows the results on the Sleep EDF expanded
dataset for direct application of the SOMNIA-trained models
as well as training from scratch using 10-fold cross validation.
We also compare our model to results from literature that used
the same 10-fold cross validation setup. Note that there is a
mismatch between the signals available in SOMNIA and those
in the EDF expanded dataset. To allow for a direct application
of the SOMNIA-trained models, we used the models trained
on the signals that are topographically closest.

Our model achieves highly comparable performance to that
of other models proposed in the literature. Even though our
model does not reach the highest performance of all proposed
methods, it has the major benefit of being much more flexible
and scalable due to the factorized combination rule. Table IV

also shows that training from scratch on Sleep-EDF resulted
in better performance than the direct application approach,
probably due to the differences in signal acquisition, scoring
rules, recording equipment and especially electrode placement.
Interestingly, the horizontal EOG from the Sleep-EDF dataset
does not reach the same sleep staging performance as the E1-
M2 and E2-M2 electrodes from the SOMNIA set, even when
training from scratch. This suggests that the horizontal EOG
acquired in the Sleep-EDF dataset has different characteristics
and is not as informative for sleep staging as the new AASM-
recommended EOG placement [1].

IV. DISCUSSION

We introduced a deep generative model for sleep staging with
arbitrary sensor input. We have shown that the model can be
applied to not only standard sleep staging signals, such as the
EEG, or surrogate signals, such as the finger PPG, but also
to unconventional ones, such as the SpO2 signal or the Leg
EMG. Additionally, by leveraging the factorized score-based
diffusion rule, the model can be applied to any combination of
sensor inputs using separately trained models. This results in
two desirable properties. Firstly, the proposed system can be
extended naturally to newly developed measurement modalities,
as one only needs to train one separate network solely on this
new signal, after which it can be seamlessly adopted into our
framework. This makes the framework highly scalable, because
the integration of a new sensor does not require the collection
of recordings with all sensors present. This is a unique feature
resulting from the application of diffusion modeling to Bayes’
rule, allowing it to circumvent the intractable evidence terms
from equation (4). Secondly, the ad-hoc combination of sensors,
especially surrogate sensors, opens up sleep staging to other
fields of medicine, where sleep is largely under-studied but
still of vital importance. For example, allowing identification
of sleep disorders from Holter ECG in the context of cardiac
arrythmias or tracking sleep based on vital signs in the ICU.
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TABLE IV
RESULTS ON THE ‘EDF EXPANDED’ DATASET. WE SHOW THE RESULTS FOR DIRECT APPLICATION OF THE SOMNIA TRAINED MODELS AS WELL AS

TRAINING FROM SCRATCH USING 10-FOLD CROSS VALIDATION CROPPED TO ± 30 AROUND THE SUBJECT’S SLEEP. RESULTS FROM LITERATURE ARE

TAKEN FROM THEIR RESPECTIVE PAPERS AND ALL USED SIMMILAR 10-FOLD CROSS VALIDATION AND CROPPING.

Five-class staging
Method Signals Acc [%] Kappa [-] MF1 [-]
FSDM trained on SOMNIA †‡ Fpz-Cz + Pz-Oz + Horizontal EOG 81.9 0.746 0.751
FSDM trained on SOMNIA †‡ Fpz-Cz + Horizontal EOG 79.5 0.715 0.732
FSDM trained on SOMNIA † Fpz-Cz + Pz-Oz 81.7 0.741 0.746
FSDM trained on SOMNIA † Fpz-Cz 76.1 0.662 0.696
FSDM trained on SOMNIA † Pz-Oz 80.7 0.728 0.734
FSDM trained on SOMNIA ‡ Horizontal EOG 76.4 0.675 0.706
FSDM trained on EDF Expanded Fpz-Cz + Pz-Oz + Horizontal EOG 82.9 0.758 0.762
FSDM trained on EDF Expanded Fpz-Cz + Horizontal EOG 82.6 0.753 0.757
FSDM trained on EDF Expanded Fpz-Cz + Pz-Oz 82.7 0.755 0.756
FSDM trained on EDF Expanded Fpz-Cz 82.5 0.753 0.754
FSDM trained on EDF Expanded Pz-Oz 79.9 0.715 0.724
FSDM trained on EDF Expanded Horizontal EOG 79.2 0.704 0.723
Catboost [30] (2023) Fpz-Cz + Pz-Oz + Horizontal EOG 83.0 0.763 0.772
CareSleepNet [31] (2024) Fpz-Cz + Horizontal EOG 85.1 0.789 0.804
XSleepNet2 [32] (2022) Fpz-Cz + Horizontal EOG 84.0 0.778 0.779
XSleepNet2 [32] (2022) Fpz-Cz 84.0 0.778 0.787
LGSleepNet [33] (2023) Fpz-Cz 82.3 0.75 0.760
SleepTransformer [28] (2022) Fpz-Cz 81.4 0.743 0.743
TinySleepNet [34] (2021) Fpz-Cz 83.1 0.77 0.781
DeepSleepNet-Lite [35] (2021) Fpz-Cz 80.3 0.73 0.752
U-Time [36] (2019) Fpz-Cz - - 0.76
SleepEEGNet [37] (2019) Fpz-Cz 80.0 0.73 0.736
SleepEEGNet [37] (2019) Pz-Oz 77.6 0.689 0.700

There is a mismatch between signal derivations present in SOMNIA and those in EDF expanded:
† Using the model trained on derivations F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, O2-M1.

‡ Using the model trained on derivations E1-M2, E2-M2.

The factorized score-based diffusion rule permits a natural
means of expressing the information gained from each input
signal by comparing its likelihood and prior terms. Following
recent literature [20], [21], this comparison was performed
using the cosine distance between the hypnodensities generated
by the terms. This is different from current interpretability
approaches in automatic sleep staging, which can broadly be
categorized into three strategies. Gradient-based approaches
that leverage the Gradient-weighted Class Activation Mapping
(Grad-CAM) algorithm [38], [39], which relate how much
each input element contributes to the classification output.
Attention-based approaches, which characterizes which parts
of the input space are used by the model for each decision,
leveraging both ‘soft’ [28] and ‘hard’ attention [40]. Lastly,
SHapley Additive exPlanations (SHAP) methods, which assign
an additive importance value to each input feature [41].
The information metric contrasts with the aforementioned
approaches, as it is not concerned with relating the decision
to each specific sample (or mini-epoch) in the input signals.
Rather, it calculates for each epoch how much information each
signal contributed, with information defined as a divergence
from rational beliefs (the prior). The information gain was
found to be strongly correlated to classification performance.
Furthermore the average information gain drops when a signal
becomes less ‘useful’, for example during segments of missing
data, or in the presence of additive noise.

To achieve the unique advantages of the factorized score-
based diffusion model, we assumed conditional independence of
the signals given the hypnogram. Without this assumption, key
features such as separate training of models, information gain
calculation, and zero-shot inference on unseen combinations of
signals would not be possible. The assumption of conditional

independence is similar to that of the naive Bayesian classifier.
However, while the naive Bayesian classifier is linear, the
proposed FSDM model is highly non-linear due to its reliance
on score-based diffusion and neural networks. In practice, the
assumption of conditional independence may not always hold,
for example through effects like cardio-respiratory coupling or
neuro-cardiac coupling. However, introducing inter-dependence
between modalities would require training the model on com-
binations of signals, which would negate the advantages of our
approach. This holds for any type of machine learning model
(neural networks as well as conventional algorithms). Despite
not fully modeling such inter-dependencies, our model still
achieves sleep staging performance comparable to human inter-
rater agreement, empirically demonstrating that the violation
of this assumption does not impact the results.

The proposed method is related to mixture of experts (MOE)
models [42], where different parts of a network specialize in
distinct tasks. In the proposed FSDM framework, we create an
expert for each sleep measurement signal. However, the FSDM
algorithm differs from traditional MOE models in several key
aspects. Typically, MOE models are applied to a single input
data type, after which a gating network determines which
expert(s) to utilize for producing an output and how to combine
their contributions. In contrast, we leverage diverse input types,
each with its own specific expert. Additionally, no gating
network is employed. Instead, we use our factorized score
calculation from equation (1). This approach offers a unique
advantage over MOEs. In MOEs, the gating network needs
to be trained and, if applied to our framework, would still
require examples with all signals present simultaneously. We
circumvent this issue with the theoretical setup of equation (1),
as we only need to train on examples of individual signals.
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In literature on automatic sleep staging, human inter-rater
agreement serves as an upper limit on performance since it
characterizes how consistent the ground truth is to which we
are comparing [43]. The large-scale study by Rosenberg and
Van Hout conducted based on the AASM inter-rater agreement
program [44] found an average agreement of 82.6% using
the scoring behavior of over 2,500 scorers. Because the data
used in the present study came from one clinic, its inter-rater
agreement serves as the upper limit. An average agreement
of around 86% has been measured, based on both an internal
institutional inter-rater agreement assessment and the AASM
inter-rater agreement program. We verified this on the 111
recordings of the dataset where two scorings from multiple
technicians were available, finding an average agreement of
85.8%. The proposed model reaches this upper limit for inputs
of single-channel EEG, single-channel EOG, or combinations
that include EEG/EOG. For all other signals, it is much more
difficult to ascertain whether the performance limit has been
reached, as one would need to characterize exactly how much
the model could be improved further (epistemic uncertainty),
versus how much inherent sleep stage ambiguity is present in
these signals (aleatoric uncertainty) [43]. In particular when
using surrogate signals where visual scoring by humans is not
possible, these limits have not been formally established.

The present work also offers some surprising new insights
on the potential of different sensors for the sleep staging
task. Firstly, the relatively good performance of the snoring
microphone both quantitatively and qualitatively. This mi-
crophone is placed in contact with the skin directly above
the trachea and is typically only used to monitor snoring.
However, we hypothesize that the vibrations caused by cardiac
and respiratory activity are picked up by the microphone and
enable sleep staging by our model. Secondly, the fact that it
is possible to perform sleep staging using the SpO2 signal.
While 5-class accuracy using the SpO2 signal is only 68.7%
(Table III), sleep-wake accuracy reaches 89.1% (supplement B).
Thirdly, the sleep staging performances of the EMG signals are
surprisingly high, see Table III. Typically, these sensors are only
used to detect muscle atonia during the REM stage, but we show
here that they carry information about all the sleep stages. The
performance of using EMG signals becomes even better when
considering two EMG signals from different muscle groups,
such as the leg together with the sternocleidomastoid. Lastly,
our extensive analysis of various signals that can be leveraged
for sleep staging on the same dataset demonstrates their relative
usefulness for this task. The best results are obtained with
EEG/EOG, particularly for 5-class sleep stage classification.
However, other, more practical sensors can provide sufficiently
accurate sleep staging performance for specific tasks. For
example, total sleep time estimation can be effectively estimated
with an HSAT, long-term sleep monitoring can be conducted
using only a finger PPG or Holter ECG, and bruxism detection
can be performed using only chin EMG.

The use of only SpO2 or single-channel EMG to perform
sleep staging has not been described in the literature before. In
future work, it needs to be investigated whether these findings
hold across different acquisition setups. In the SOMNIA and
HealthBed datasets, only minimal preprocessing is performed

on the front-end of the sensors and all data is stored in
high resolution, with low-pass filtering, sampling rates and
quantization specifications beyond those recommended by the
AASM. This is in general not the case for data measured
in many sleep laboratories, where forms of data compression,
quantization, filtering, and resampling, are usually applied. One
hypothesis is that sleep staging based on the SpO2 and EMG
signals is possible in this set, because the minimal preprocessing
leaves the possibility of desirable (insofar as sleep staging is
concerned) contamination of cardiac and respiratory signals.
However, this hypothesis remains speculative for now and
needs to be tested in future work. The desirable contamination
effect has already been proven for EOG-based sleep staging,
where EEG contamination can be leveraged to achieve high
levels of agreement against manual scoring [24], [45], and
in sleep staging based on the suprasternal notch sensor, from
which the cardiac and respiratory signals can be extracted [7].

The use of score-based diffusion models requires some
computational considerations. We trained the models on two
machines (NVIDIA GeForce RTX 3080 TI, NVIDIA RTX
A5000) and found that training a model takes between 30
to 60 hours and uses 7.6 GB of VRAM. It is important
to note that this training time represents a one-time upfront
investment and can be done in parallel for each signal modality.
Once trained, the inference process is fast, as highlighted
in Supplement L. Moreover, the 30-60 hours of GPU time
is relatively minor compared to the substantial cost and
time investment required for data collection (e.g., the dataset
used in this study comprises 16,244 hours of recording).
The hardware requirements, especially the VRAM usage,
hamper the application of the model in edge devices. Future
work focusing on reducing the computational cost could
consider hyper-parameter optimization, neural network pruning,
consistency models [46], and model distillation [47]. However,
our current results, achieved without these methods, already
demonstrate the robustness and effectiveness of our approach.

This work opens several avenues for future research. Firstly,
the model could be expanded to cover often-used wearables
and nearables by training signal-specific networks for each
of them, these include wrist-worn reflective PPG, under-the-
mattress sensors, microphones placed near the bed, and video.
Care must be taken to synchronize these devices to the PSG
from which the ground truth is derived, e.g. by matching the
inter-beat intervals of two cardiac signals. Secondly, our main
dataset is not publicly available (see data availability statement
for data sharing conditions). To facilitate reproducibility, we
added results on the open access Sleep EDF expanded dataset.
While we have evaluated the direct application of the SOMNIA
models and training the models from scratch, the exploration
of different transfer learning strategies can be studied in future
work to obtain even better results on new datasets. Moreover,
the model could be applied to datasets with multiple scorings
available per recording to evaluate the degree of inter-rater
agreement (of overnight sleep statistics) captured. This can
be done using the same setup as reported in previous work
[18], where cumulative distributions of multiple scorers are
compared to those created by a generative sleep staging model.
Additionally, no extensive hyper-parameter search or tuning
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was performed beyond an initial verification of the chosen
diffusion settings on the validation set. A comprehensive hyper-
parameter optimization could be considered to potentially
improve the performance of the proposed model. Care must be
taken however to not introduce unintentional overfitting or test
set leakage. Furthermore, we have demonstrated that the flow in
a PAP device can be leveraged to perform sleep staging, at least
using CPAP or APAP devices. The number of recordings with
ASV and bi-level PAP was low, so we cannot compare sleep
structure of subjects using different PAP devices. Future studies
could recruit larger numbers of subjects using different PAP
modalities to allow for further comparisons. Lastly, while the
FSDM framework is proposed here to factorize the score over
sensor modalities, other factorizations could also be considered.
For example, by factorizing over different patient populations,
such as patients with intellectual disabilities or patients in an
ICU, one could tailor the automatic sleep staging model to
their specific characteristics. A factorization across different
clinics could also be applied, which would enable federated
learning where clinics only share their final model with one
another and not the underlying training data.

To conclude, we developed a deep generative model for the
task of 5-class sleep staging that can use arbitrary (combinations
of) sensor input. The unified framework allows for the direct
comparison of different combinations of input measurements
on sleep staging performance. Our proposed factorized solution
is highly flexible, can be applied to a myriad of settings, and
can easily be extended to new sensors while at the same time
being robust to missing data. Furthermore, we proposed a novel
interpretability metric based on information gain, allowing us to
express at what time and by how much the model makes use of
each signal for its decision. This work represents a fundamental
step in the direction of a true universal sleep staging algorithm
that goes beyond traditional fixed measurement set-ups and
paves the way for more accessible and adaptable sleep analysis
in diverse clinical populations and settings.
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