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(57) ABSTRACT

A mechanism for estimating sleep stages of an subject’s
sleep session using a machine-learning algorithm. An EOG
signal, produced during the sleep session, is obtained. For
each of a plurality of samples, a subset of one or more other
samples is obtained. The subset is identified by determining
temporal dependencies between the sample and the other
sample(s) using temporal information trained into the
machine-learning algorithm. Each sample is processed using
its corresponding subset of one or more other samples to
produce an estimate sleep stage for the sample. This pro-
duces a plurality of sleep stages for the sleep session of the
subject.
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SYSTEM AND METHOD FOR ESTIMATING
SLEEP STAGE

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of European
Patent Application No. 23194832 4, filed Sep. 1, 2023. This
application is incorporated by reference herein.

FIELD OF THE INVENTION

[0002] The invention relates to the field of sleep stage
scoring.

BACKGROUND OF THE INVENTION
[0003] Sleep stage scoring is used in the diagnosis of

many sleep disorders. Sleep stage scoring is conventionally
performed by conducting a polysomnography (PSG) study,
in which several physiological parameters are measured
over a night of sleep. The clinical gold standard for sleep
stage scoring is a sleep stage analysis of a PSG measurement
conducted by a human technician.

[0004] In a PSG study, electroencephalography (EEG),
electrooculography (EOG) and electromyography (EMG)
measurements are recorded, among others. This requires a
subject undergoing a PSG study to sleep while connected to
a large number of wires, which can cause discomfort to the
subject. Further, performing a full PSG is costly and labor-
intensive, and analyzing the PSG to perform sleep stage
scoring requires clinical expertise.

[0005] There is therefore a need for improved sleep stage
scoring techniques.

[0006] Article “Towards Interpretable Sleep Stage Classi-
fication Using Cross-Model Transformers” by Jathurshan
Pradeepkumar et. al, Arxiv.org, 15 Aug. 2022, discloses a
transformer-based method for sleep stage classification. The
proposed cross-modal transformers consist of a cross-modal
transformer encoder architecture along with a multi-scale
1-dimensional convolutional neural network for automatic
representation learning.

[0007] Article “A hierarchical sequential neural network
with feature fusion for sleep staging based on EOG and RR
signals”, by Chenglu Sun et. al., Journal of Neural Engi-
neering 16 (2019), 29 Oct. 2019, discloses an automatic
sleep staging method that uses a hierarchical sequential
neural network to process only the electrooculogram (EOG)
and R-R interval (RR) signals.

SUMMARY OF THE INVENTION

[0008] The invention is defined by the claims.

[0009] According to examples in accordance with an
aspect of the invention, there is provided a processing
system for estimating sleep stages of a subject during a sleep
session. The processing system is configured to use a
machine-learning algorithm configured to: receive an elec-
trooculography, EOG, signal that is responsive to a cornea-
retinal standing potential between a front and a back of the
eye of the subject during the sleep session, wherein the EOG
signal is produced by an EOG electrode, wherein the EOG
signal comprises an EOG component and an EEG compo-
nent, wherein the EOG component represents a signal from
the eye, wherein the EEG component represents a signal
from a cortex; and for each target sample of a plurality of
target samples of the EOG signal: identify, based on the
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EOG component and the EEG component, as an other
sample subset, a subset of one or more other samples in the
EOG signal using temporal information to identify temporal
dependencies between samples of the EOG signal, wherein
the temporal information is defined by a training of the
machine-learning algorithm; and estimate a sleep stage
associated with the target sample by processing the sample
and the other sample subset.

[0010] The proposed approach provides a mechanism for
accurate estimation of sleep stage for different samples of an
EOG signal, e.g., based on an EOG signal having a single
channel or an EOG signal having a plurality of channels. An
accurate estimation of sleep stage is provided based on only
the EOG signal from the EOG electrode. Since only the
EOG electrode is needed to obtain the estimation of the sleep
stage, this significantly decreases the number of wires to
which a subject must be connected in order to perform sleep
stage scoring. As a result, sleep stage scoring is made more
comfortable for the subject while providing an estimation of
sleep stage that is accurate enough to be clinically useful.
The comfort is important because the subject needs to sleep
with the EOG electrode connected to the subject.

[0011] The mechanism proposes using a machine-learning
algorithm to identify, for a target sample, one or more other
samples that have a temporal dependency with the target
sample. The machine-learning algorithm is thereby trained
to identify temporal dependencies between samples of the
EOG signal. In particular, temporal information is used by
the machine-learning algorithm (e.g., forms trained values
or coefficients of the machine-learning algorithm) to identify
the one or more other samples. The target sample and the
identified other samples (labelled an “other sample subset™)
are further processed by the machine-learning algorithm to
identify or estimate a sleep stage for the sample of the EOG
signal.

[0012] The temporal information comprises information
about the time the samples were sampled during the sleep
session. For example, the temporal information comprises,
for each sample in the EOG signal, a time stamp, or a time
label, or any other type of identifier that identifies the time
at which the sample was sampled in the sleep session. The
temporal information allows the machine-learning algorithm
to process the samples in any order. For example, samples at
the end of the sleep session are processed by the machine
learning algorithm before samples at the beginning of the
sleep session are processed. The temporal information
allows the machine-learning algorithm to process batches of
subsets of non-consecutive samples. The temporal informa-
tion allows the machine-learning algorithm to process
batches of subsets of non-consecutive samples simultane-
ously. Because the machine learning algorithm is able to
process the samples in these ways, the efficiency of the
processing is increased. For example, in case the subject
wakes up shortly after falling asleep, and remains awake for
a long time, the machine learning algorithm is able to skip
the samples corresponding to this awake time to determine
sleep stages relating to non-wake sleep stages, such as light
sleep, deep sleep, and REM sleep. Because of the temporal
information, the machine learning algorithm is made aware
of where each sample belongs in the sleep session. In
comparison, in known convolutional neural networks
(CNNs) and known recurrent neural networks (RNNs), the
samples are processed based on order information instead of
temporal information. The order information indicates the
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order in which the samples are sampled, i.e., which sample
is sampled first, which sample is sampled after the first
sample, etc. As the known CNNs and RNNs make use of the
order information, but not the temporal information, pro-
cessing of samples is less efficient, or proper processing may
be impossible due to limitations of hardware.

[0013] Conceptually, the machine-learning algorithm
thereby comprises at least an other sample subset identifying
portion and a sleep stage determining portion. The other
sample subset identifying portion identifies the other sample
subset associated with the target sample. The sleep stage
determining portion processes the target sample and the
other sample subset to predict the sleep stage for the target
sample. The two portions may have been trained simulta-
neously. Of course, the machine-learning algorithm may
comprise one or more other portions, e.g., a pre-processing
portion to characterize or extract features from the sample(s)
of the EOG signal.

[0014] Thus, in the context of the present disclosure the
machine-learning algorithm has been trained to identify
temporal dependencies, and is therefore capable of taking
into account a sleep stage from a sample at the start of the
EOG signal when estimating sleep stage for a sample later
in the EOG signal (e.g. after several hours of sleep).

[0015] The inventors have recognized that, in addition to
sleep stage transitions tending to occur between particular
sleep stages, sleep stages across a night of sleep have a
structured nature that means that a likelihood of a subject
being in a particular sleep stage at a particular time in the
night depends on the architecture of the sleep that has
already occurred during the sleep session. Thus, improved
identification of the sleep stage for each target sample can be
achieved.

[0016] It has been previously mentioned how an EOG
signal may comprise multiple channels. Each channel may,
for instance, represent a signal measured by a different
electrode of an EOG sensing system, e.g., one for each eye
of the subject.

[0017] The machine-learning algorithm employs, for
example, an attention-based mechanism to identify, for each
target sample, the other sample subset.

[0018] The machine-learning algorithm employs, for
example, a positional encoding scheme to provide for each
target sample an absolute location and a relative location
relative to the other samples.

[0019] The training of the machine-learning algorithm
comprises, for example, learning the temporal information at
arbitrary time-scales based on the positional encoding
scheme and the attention-based mechanism.

[0020] Forexample, the time-scale is large during a period
in the sleep session in which there is no change of the sleep
stages. For example, the time-scale is large in case the
subject is awake for a long time during the sleep session. The
time-scale is large when there is a relatively long period
between samples used for learning. For example, the time-
scale is small during a period in the sleep session in which
there is a lot of change of the sleep stages. For example, the
time-scale is small, when the subject has a period with
arousals, causing the sleep stage to change from a deep sleep
stage to a light sleep stage or to a wake sleep stage. The
time-scale is small when there is a relatively short period
between samples used for learning. The short period is
shorter than the long period.
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[0021] The machine-learning algorithm may be config-
ured to, for each target sample, estimate a sleep stage
associated with the target sample responsive to a depen-
dency between the timing of the target sample, within the
sleep session, and the timing of each other sample in the
other sample subset. It has been identified that the relative
temporal position between the target sample and other
samples that have a temporal dependency on the target
sample are significantly influenced by the sleep stage of the
target sample. Thus, estimation of the sleep stage of the
target sample can be performed more accurately.

[0022] In some examples, the timing of the target sample,
within the sleep session, and the timing of the samples in the
other sample subset are nonconsecutive. For instance, the
target sample is not adjacent in time with the samples of the
other sample subset. For example, the timing of the target
sample and the timing of the samples in the other sample
subset are temporally separated from each other by at least
30 seconds, or at least a minute or a least five minutes or at
least one hour.

[0023] In some examples, the timing of at least one of the
samples in the other sample subset is nonconsecutive with
the other samples in the other sample subset. For instance,
the other sample subset has at least one sample that is not
adjacent in time with other samples in the other sample
subset. For example, the timing of the at least one sample in
the other sample subset is temporally separated from the
other samples in the other sample subset by at least 30
seconds, or at least a minute or a least five minutes or at least
one hour.

[0024] The machine-learning algorithm may be config-
ured to, for each target sample, estimate a sleep stage
associated with the target sample responsive to a timing of
the target sample within the sleep session. This approach
recognizes that different sleep stages occur at different
relative frequencies throughout the night. For example, in
healthy sleep, sleep stage N3 is more often observed in the
first half of the night, while REM sleep is more often
observed at the end. Thus, the timing of the target sample
within the sleep session provides useful information for
improving the accuracy of identifying the sleep stage asso-
ciated with the target sample.

[0025] The machine-learning algorithm may be further
configured to: use the temporal information to generate
characterizing information for each sample in the EOG
signal, including the plurality of target samples; and for each
target sample, identify the other sample subset by identify-
ing, as the other sample subset, one or more other samples
sharing matching characterizing information to the target
sample.

[0026] The machine-learning algorithm may be config-
ured to use the temporal information to generate a key, value
and query for each sample in the EOG signal, wherein the
key represents the characterizing information.

[0027] The machine-learning algorithm may be config-
ured to employ an attention-based mechanism to identify, for
each target sample, the other sample subset. The machine-
learning algorithm may be a neural network having a
transformer architecture.

[0028] The input to the machine-learning algorithm may
consist of only the EOG signal. In other words, no other
physiological signals are input to the machine-learning
algorithm in some examples. This means that the subject is
only connected to electrodes for acquiring the EOG signal,
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improving the comfort of the subject compared with a full
PSG. As previously mentioned, the EOG signal may com-
prise a plurality of channels (e.g., each representing a signal
or sub-signal generated for each eye).

[0029] The EOG signal (input to the machine-learning
algorithm) may include electroencephalography, EEG,
information. This information is automatically present in an
EOG signal, and is usually filtered out. By not filtering the
EOG signal to remove EEG information before processing
by the machine-learning algorithm, the EEG information
may be used to improve the accuracy of the sleep stage
estimation. While EOG information is beneficial for wake
and Rapid Eye Movement (REM) sleep classification, the
EEG information in the signal may be useful for identifying
or classifying non-REM sleep (for instance, N3 sleep is
characterized by slow-wave cortical patterns).

[0030] The EOG signal may be received by the machine-
learning algorithm after the sleep session. This allows the
machine-learning algorithm to process the EOG signal for
the entire sleep session, meaning that later samples in the
EOG signal are available to the machine-learning algorithm
at the time of estimating a sleep stage for an earlier sample.
[0031] The processing system may be further configured
to process the estimated sleep stages to generate a hypno-
gram for the subject. The hypnogram itself represents the
state of the subject over the course of a sleep session, thereby
providing valuable information about the condition of the
subject for the purposes of sleep analysis and/or assessment
and/or the diagnosis of one or more sleep conditions.
[0032] There is also proposed a processing system for
generating temporal information for use in a machine-
learning algorithm for estimating sleep stages of a subject
during a sleep session. The processing system is configured
to: receive a training EOG signal that is responsive to a
cornea-retinal standing potential between a front and a back
of an eye of a subject during a sample sleep session, wherein
the EOG signal is produced by an EOG electrode, wherein
the EOG signal comprises an EOG component and an EEG
component, wherein the EOG component represents a signal
from the eye, wherein the EEG component represents a
signal from a cortex; receiving a sleep stages reference input
representative of sleep stages during the sample sleep ses-
sion; and process, based on the EOG component and the
EEG component, samples of the training EOG signal and the
sleep stages reference input to determine temporal depen-
dencies between the samples of the EOG signal; and gen-
erate the temporal information responsive to the determined
temporal dependencies.

[0033] The machine-learning algorithm employs, for
example, an attention-based mechanism to identify, for each
target sample, the other sample subset.

[0034] The machine-learning algorithm employs, for
example, a positional encoding scheme to provide for each
target sample an absolute location and a relative location
relative to the other samples.

[0035] The training of the machine-learning algorithm
comprises learning the temporal information at arbitrary
time-scales based on the positional encoding scheme and the
attention-based mechanism.

[0036] There is also proposed a computer-implemented
method for estimating sleep stages of a subject during a
sleep session, the computer implemented method compris-
ing using a machine-learning algorithm configured to:
receive an electrooculography, EOG, signal that is respon-
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sive to a cornea-retinal standing potential between a front
and a back of the eye of the subject during the sleep session,
wherein the EOG signal is produced by an EOG electrode,
wherein the EOG signal comprises an EOG component and
an EEG component, wherein the EOG component represents
a signal from the eye, wherein the EEG component repre-
sents a signal from a cortex; and for each sample of a
plurality of samples of the EOG signal: identify, based on
the EOG component and the EEG component, as an other
sample subset, a subset of one or more other samples in the
EOG signal using temporal information to identify temporal
dependencies between samples of the EOG signal, wherein
the temporal information is defined by a training of the
machine-learning algorithm; and estimate a sleep stage
associated with the sample by processing the sample and the
other sample subset.

[0037] The machine-learning algorithm employs, for
example, an attention-based mechanism to identify, for each
target sample, the other sample subset.

[0038] The machine-learning algorithm employs, for
example, a positional encoding scheme to provide for each
target sample an absolute location and a relative location
relative to the other samples.

[0039] The training of the machine-learning algorithm
comprises learning the temporal information at arbitrary
time-scales based on the positional encoding scheme and the
attention-based mechanism.

[0040] The machine-learning algorithm used in the com-
puter-implemented method may be modified analogously to
any herein described machine-learning algorithm used by a
processing system.

[0041] The machine-learning algorithm may be config-
ured to, for each sample, estimate a sleep stage associated
with the sample responsive to a dependency between the
timing of the sample, within the sleep session, and the timing
of each other sample in the other sample subset.

[0042] The computer-implemented method may be
adapted to carry out the functions of any herein proposed
processing system, and vice versa.

[0043] There is also proposed a computer program product
comprising computer program code means which, when
executed on a computing device having a processing system,
cause the processing system to perform all of the steps of
any herein disclosed method.

[0044] These and other aspects of the invention will be
apparent from and elucidated with reference to the embodi-
ment(s) described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0045] For a better understanding of the invention, and to
show more clearly how it may be carried into effect,
reference will now be made, by way of example only, to the
accompanying drawings, in which:

[0046] FIG. 1 illustrates a workflow in which embodi-
ments can be employed;

[0047] FIG. 2 is a flowchart illustrating a proposed
method; and

[0048] FIG. 3 is a flowchart illustrating another proposed
method.
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DETAILED DESCRIPTION OF THE

EMBODIMENTS
[0049] The invention will be described with reference to
the Figures.
[0050] It should be understood that the detailed descrip-

tion and specific examples, while indicating exemplary
embodiments of the apparatus, systems and methods, are
intended for purposes of illustration only and are not
intended to limit the scope of the invention. These and other
features, aspects, and advantages of the apparatus, systems
and methods of the present invention will become better
understood from the following description, appended
claims, and accompanying drawings. It should be under-
stood that the Figures are merely schematic and are not
drawn to scale. It should also be understood that the same
reference numerals are used throughout the Figures to
indicate the same or similar parts.

[0051] The invention provides a mechanism for estimating
sleep stages of a subject’s sleep session using a machine-
learning algorithm. An EOG signal, produced during the
sleep session, is obtained. For each of a plurality of samples,
a subset of one or more other samples is obtained. The subset
is identified by determining temporal dependencies between
the sample and the other sample(s) using temporal informa-
tion trained into the machine-learning algorithm. Each
sample is processed using its corresponding subset of one or
more other samples to produce an estimate sleep stage for
the sample. This produces a plurality of sleep stages for the
sleep session of the subject.

[0052] The present invention recognizes that a significant
improvement to the detection or determination of a sleep
stage associated with a target sample of an EOG signal can
be achieved by identifying temporal dependencies with
other samples of the EOG signal. In particular, other samples
that have a temporal dependency with the target sample have
been identified as having a significant influence on the
likelihood as to which sleep stage is associated with the
target sample.

[0053] Embodiments can be employed in any environment
in which the estimation of sleep stages of a sleep session is
desired, e.g., for improved understanding of the character-
istics of a subject during the sleep session. This information
can, for instance, be useful for assessing the condition of the
subject and/or making a diagnosis of the subject (e.g., to
identify interrupted or shallow sleep, such as that caused by
sleep apnea).

[0054] The term sleep stage is a well-established term in
the field of sleep analysis. Sleep can be typically be classi-
fied into at least five stages, including: “awake”; “N17;
“N2”; “N3” and “REM”. Each stage may be associated with
a different categorical value.

[0055] FIG. 1 illustrates an example workflow for obtain-
ing and processing an EOG signal according to a proposed
approach, for improved contextual understanding.

[0056] In this approach, a (single-lead) analog EOG signal
SA obtained during a sleep session is measured and con-
verted to a suitable digital input format by an analog-to-
digital converter 101 (ADC), thereby producing a (digital)
EOG signal Sp. Conversion from the analog domain to a
digital domain typically comprises performing sampling and
quantization of an analogue signal, here: the analog EOG
signal. Approaches for performing analog-to-digital conver-
sion are well known in the art, and are not described in detail
for the sake of conciseness.
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[0057] In the context of the present disclosure, an EOG
signal is an electrooculography signal that is responsive to a
cornea-retinal standing potential between a front and a back
of the eye of the subject during the sleep session.

[0058] Further relevant pre-processing steps can also be
performed. Such pre-processing steps can be performed in
the analog domain and/or the digital domain. Suitable
examples of pre-processing processes include signal scaling,
signal quality validation and so on.

[0059] A machine-learning algorithm 100 is used to pro-
cess the digital EOG signal SD (hereafter: EOG signal) in
order to predict a sleep stage associated with each of a
plurality of samples of the EOG signal. It will be clear that
the EOG signal is formed from a time-series of values, each
value being a sample of the analog EOG signal. A sleep stage
is predicted for a plurality of the values/samples (e.g., all of
the samples or only some of the samples), which are labelled
the target samples.

[0060] In some examples, the predicted sleep stages are
used to produce a hypnogram of the sleep session. As is well
known, a hypnogram is a graph that represents the stages of
sleep as a function of time. As each target sample will be
associated with a particular point in time, the generation of
ahypnogram using the sleep stages for a plurality of samples
can be trivially performed.

[0061] In determining the sleep stage associated with each
target sample, the machine-learning algorithm is configured
to effectively identify one or more other samples that have
a temporal relationship or dependency with the target
sample (for which a sleep stage is to be identified). In
particular, the machine-learning algorithm identifies tempo-
ral dependencies between the target sample and one or more
other samples of the EOG signal. These one or more other
samples form an other sample subset, which is processed
alongside the target sample to predict the sleep stage asso-
ciated with the target sample.

[0062] Thus, rather than processing each target sample
independently or (only) alongside other samples having a
fixed temporal relationship with the target sample (e.g., a
window of samples centered around the target sample), the
proposed approach independently identifies other samples
that have a temporal relationship with the target sample.
Thus, the collection of samples subsequently processed (to
identify a sleep stage for one of the samples) does not have
a fixed temporal relationship before being identified by the
machine-learning algorithm.

[0063] In the proposed approach, the identified other
samples do not need to be consecutive or temporally adja-
cent to any of the other samples and/or the target sample. In
particular, each other sample may be temporally distanced
from any other sample and/or the target sample.

[0064] In preferred examples, the timing of the target
sample, within the sleep session, and the timing of the
samples in the other sample subset are nonconsecutive.
Thus, in some examples, the target sample is not adjacent in
time with the samples of the other sample subset. For
example, the timing of the target sample and the timing of
the samples in the other sample subset are temporally
separated from each other by at least 30 seconds, or at least
a minute or a least five minutes or at least one hour.
[0065] Insome examples, there may be at least one further
sample (not included in the other sample subset) that is
temporally located between the target sample and at least
one of the other samples in the other sample subset. In such
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examples, this further sample is not processed by the
machine-learning method in determining the sleep stage for
the target sample.

[0066] In some examples, the timing of at least one of the
samples in the other sample subset is nonconsecutive with
the other samples in the other sample subset. In this
example, the other sample subset has at least one sample that
is not adjacent in time with other samples in the other sample
subset. For example, the timing of the at least one sample in
the other sample subset is temporally separated from the
other samples in the other sample subset by at least 30
seconds, or at least a minute or a least five minutes or at least
one hour.

[0067] The identifying of the other sample subset, for any
given target sample, is performed using temporal informa-
tion defined by a training of the machine-learning algorithm.
The temporal information may, for instance, represent val-
ues, coeflicients, biases, activation values and/or weights of
the machine-learning algorithm that are used to identify the
other sample subset. Thus, the temporal information may
represent one or more intrinsic values of the machine-
learning algorithm that are trained (e.g., modified in a
training procedure) to facilitate the identification of an other
sample subset of other samples having a temporal depen-
dency with a target sample (for which a sleep stage is to be
estimated).

[0068] One approach for facilitating the detection of an
other sample subset having temporal dependencies with a
target sample for which a sleep stage is to be estimated
makes use of a machine-learning network having an atten-
tion-based mechanism, e.g., one that employs transformers.
[0069] The operation, configuration and function of trans-
formers in the context of deep learning or machine-learning
algorithms are established in the art. A transformer contains
two elements that make it especially suitable for use in a
sleep stage estimation technique.

[0070] Firstly, the addition of a positional encoding
scheme ensures that the machine-learning algorithm is able
to effectively see at what time each target sample is located
(relative to the overall sleep session). This is useful, since
different sleep stages occur at different relative frequencies
throughout the night. For example, in healthy sleep N3 is
more often observed in the first half of the night, while REM
sleep is more often observed at the end.

[0071] Moreover, the positional encoding scheme not only
gives information about the absolute location of each target
sample, but also their relative location with respect to all
other samples of the EOG signal.

[0072] The self-attention mechanism of a transformer
enables it to make long-term associations between different
samples. A self-attention mechanism may, for instance,
leverage a scheme in which each sample is converted to a
Query, Key, and Value. The Query of each sample is used to
look or identify matching keys of other samples, and if they
match, the value of that sample is propagated to the output
to from one of the other samples for the other sample subset.
[0073] Together with the positional encoding, the self-
attention mechanism of a transformer is able to learn rela-
tions between samples at arbitrary time-scales. This over-
comes the limited memory and field-of-view constraints of
more classical approaches, such as recurrent neural net-
works.

[0074] The present disclosure thereby exploits a machine-
learning algorithm that is able to identify other samples
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having a temporal dependency with the target sample for
which the sleep stage is to be estimated to improve the sleep
stage estimation of said target sample.

[0075] It will be appreciated that once an other sample
subset has been identified, the sample and other sample
subset are further processed, e.g., in further layers of the
machine-learning algorithm, to identify the sleep stage for
the target sample.

[0076] A machine-learning algorithm is any self-training
algorithm that processes input data in order to produce or
predict output data. Here, the input data comprises the EOG
signal and the output data comprises predicted sleep stages
for a plurality of target samples of the EOG signal.

[0077] The proposed machine-learning algorithm is con-
figured to identify, for each target sample, an other sample
subset comprising one or more other samples having a
temporal dependency to/with the target sample. In preferred
approaches, the machine-learning algorithm can employ an
attention-based mechanism to identify an other sample sub-
set to be associated with each target sample.

[0078] Suitable machine-learning algorithms for being
employed in the present invention will be apparent to the
skilled person. Examples of suitable machine-learning algo-
rithms include decision tree algorithms and artificial neural
networks. Other machine-learning algorithms such as logis-
tic regression, support vector machines or Naive Bayesian
models are suitable alternatives.

[0079] The structure of an artificial neural network (or,
simply, neural network) is inspired by the human brain.
Neural networks are comprised of layers, each layer com-
prising a plurality of neurons. Each neuron comprises a
mathematical operation. In particular, each neuron may
comprise a different weighted combination of a single type
of transformation (e.g. the same type of transformation,
sigmoid etc. but with different weightings). In the process of
processing input data, the mathematical operation of each
neuron is performed on the input data to produce a numerical
output, and the outputs of each layer in the neural network
are fed into the next layer sequentially. The final layer
provides the output.

[0080] For the present disclosure, if a neural network is
used, the neural network may comprise additional layers for
performing the other sample subset identification task, e.g.,
performing the function of the attention identification.

[0081] Methods of training a machine-learning algorithm
are well known. Typically, such methods comprise obtaining
a training dataset, comprising training input data entries and
corresponding training output data entries. An initialized
machine-learning algorithm is applied to each input data
entry to generate predicted output data entries. An error
between the predicted output data entries and corresponding
training output data entries is used to modify the machine-
learning algorithm. This process can be repeated until the
error converges, and the predicted output data entries are
sufficiently similar (e.g. +1%) to the training output data
entries. This is commonly known as a supervised learning
technique.

[0082] For example, where the machine-learning algo-
rithm is formed from a neural network, (weightings of) the
mathematical operation of each neuron may be modified
until the error converges. Known methods of modifying a
neural network include gradient descent, backpropagation
algorithms and so on.
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[0083] The training input data entries correspond to
example EOG signals (i.e., training EOG signals). The
training output data entries correspond to sleep stages for
target samples of the example EOG signals.

[0084] The machine-learning algorithm 100 used in the
illustrated approach comprises or is in the form of a neural
network that processes the EOG signal Sp to estimate a sleep
stage for each of the plurality of target samples.

[0085] The machine-learning algorithm 100 may comprise
a U-net architecture. A U-net architecture may be generally
formed from an encoding portion 110 and a decoding
portion 120. An intermediate portion 130 may process
encoded data produced by the encoding portion 110. The
encoding portion may perform the function of identifying
the sample subset for each target subject.

[0086] In practice, the encoding 110 and decoding 120
(portions) may be repeated a plurality of times (represented
by the downsampling DS layer or process and upsampling
US layer or processing respectively), e.g., 4 times.

[0087] By way of example, the encoding portion 110 may
comprise one or more transformers 115 that effectively
identify the one or more other samples associated with each
target sample. The transformer 115 may comprise a self-
attention mechanism to identify or establish the samples
subset associated with each target sample. The temporal
information may form one or more weights, biases, coeffi-
cients or other trainable/learnable values of at least the
transformer(s) 115.

[0088] Examples of suitable transformer architecture(s)
include those put forward and/or explained by Vaswani,
Ashish, et al. “Attention is all you need.” Advances in neural
information processing systems 30 (2017); Lec, Juho, et al.
“Set transformer: A framework for attention-based permu-
tation-invariant neural networks.” International conference
on machine learning. PMLR, 2019; Soydaner, Derya.
“Attention mechanism in neural networks: where it comes
and where it goes.” Neural Computing and Applications
34.16 (2022): 13371-13385. Other examples are known to
the skilled person.

[0089] The machine-learning algorithm 100 may (also)
comprise a pre-processing portion 140 that processes the
EOG signal before it is processed using the U-net architec-
ture. The pre-processing portion 140 may, for instance,
comprise a context encoder for encoding or extracting a
context of the (samples of the) EOG signal.

[0090] FIG. 1 illustrates one suitable architecture for a
machine-learning algorithm. For the purposes of this illus-
tration: the label “R” refers to a residual neural network
(ResNet) layer or process; the label “T” refers to a trans-
former; the label “DS” refers to a downsampling layer or
process; the label “US” refers to an upsampling layer or
process; the label “C” refers to a convolution layer or
process; the label “A” refers to an attention layer (for a
transformer) and the label “PE” refers to a positional embed-
ding layer. A positional embedding layer is one that gener-
ates information on a relative position of a sample within a
sleep session.

[0091] FIG. 2 is a flowchart illustrating steps performed
by a machine-learning algorithm 200 for estimating sleep
stages of a subject during a sleep session. The machine-
learning algorithm may be used or exploited by an appro-
priately configured processing system, suitable examples of
which are later described.
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[0092] The machine-learning algorithm is configured to
receive, in a step 210, an electrooculography, EOG, signal.
As previously explained, the EOG signal is responsive to a
cornea-retinal standing potential between a front and a back
of the eye of the subject during the sleep session.

[0093] The machine-learning algorithm is also configured
to, for each target sample of a plurality of target samples of
the EOG signal, identify (in a step 221) an other sample
subset and estimate (in a step 222) a sleep stage associated
with the target sample by processing the sample and the
other sample subset.

[0094] The other sample subset, identified in step 221, is
a subset of one or more other samples in the EOG signal.
Step 221 is performed by using temporal information to
identify temporal dependencies between samples of the
EOG signal. The temporal information is defined by a
training of the machine-learning algorithm.

[0095] In some examples, steps 221 and 222 are repeated
for each target sample. For instance, method 200 may, for
instance, comprise performing a step 223 of determining, for
each iteration of steps 221 and 222, whether all target
samples have been processed. Responsive to a negative
determination in step 223, the method 200 may perform a
step 224 of selecting a next target sample before repeating
step 221 for the next target sample. Otherwise, the iterative
repetition of steps 221 and 222 may end.

[0096] One technique for performing step 221 is to use the
temporal information to generate characterizing information
for each/every sample (including the plurality of target
samples) in the EOG signal. This can be performed in a
separate step 230. Step 221 can then be performed by, for
each target sample, identifying the other sample subset by
identifying, as the other sample subset, one or more other
samples sharing matching characterizing information to the
target sample.

[0097] In this context, the identification of matching char-
acterizing information represents an attempt to identify or
establish other pieces of characterizing information that
informs the context of the target sample. This may, for
instance, include other samples that (in practice) do not
exactly match the current sample.

[0098] By way of example, step 230 may comprise using
the temporal information to generate a key for each sample
in the EOG signal. Thus, each sample may have at least a
key-value pair, they key characterizing the sample and the
value representing the information of the example. The key
of'a target sample may therefore represent the characterizing
information for that target sample. Step 221 may corre-
spondingly comprise identifying keys that match the (key of
the) target sample, and including any sample having a
matching key in the other sample subset for the target
sample.

[0099] In some examples, step 230 also generates a query
for each sample in the EOG signal. In such approaches, the
query of a target sample can be used to search and identify
matching keys of samples to be included in the other sample
subset, e.g., in step 221. Suitable mechanisms and tech-
niques for generating a key and/or query for a sample of data
are well known in the art, and are not described in detail for
the sake of conciseness.

[0100] For instance, suitable mechanisms are described by
Vaswani, Ashish, et al. “Attention is all you need.” Advances
in neural information processing systems 30 (2017); or
Kitaev, Nikita, Fukasz Kaiser, and Anselm Levskaya.
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“Reformer: The efficient transformer.” arXiv preprint arXiv:
2001.04451 (2020). Other suitable examples are well known
to the appropriately skilled person in the art.

[0101] In particular, step 230 and/or step 221 can be
performed by the machine-learning algorithm employing an
attention-based mechanism to identify, for each target
sample, the other sample subset. Thus, the machine-learning
algorithm may comprise an attention-based algorithmic pro-
cess, module or portion to identify the other sample subset
for each target sample.

[0102] In particular, the machine-learning algorithm may
be a neural network, at least a portion of which has a
transformer architecture (i.e., the neural network comprises
one or more transformers). The transformer architecture can
be employed to perform the attention-based mechanism in
order to identify the other sample subset for each target
sample, i.e., to carry out steps 230 and 221. Suitable
examples of transformers and transformer-based architec-
tures have been previously provided.

[0103] Step 222 may be performed by further processing
the target sample and the other sample subset using one or
more layers or further processing steps of the machine-
learning algorithm. These layers are appropriately trained
during a training of the machine-learning algorithm.
[0104] In step 222, the machine-learning algorithm esti-
mates a sleep stage associated with the target sample respon-
sive to a dependency between the timing of the target
sample, within the sleep session, and the timing of each
other sample in the other sample subset. Thus, the relative
position of the target sample to each other sample in the
other sample subset can be used in the determination or
calculation of the sleep stage for the target sample.

[0105] In step 222, the machine-learning algorithm is
configured to, for each target sample, estimate a sleep stage
associated with the target sample responsive to a timing of
the target sample within the sleep session. Thus, the absolute
position of the target sample within the sleep session can be
used to improve the estimation of the sleep stage for the
target sample.

[0106] Of course, it will be appreciated that, in practice
steps 221 and 222 may be effectively performed in parallel
for all of the target samples of the plurality of target samples.
This may, for instance, be performed by the machine-
learning algorithm processing the plurality of target samples
using a plurality of layers.

[0107] In some examples, each sample of the EOG signal
is a target sample. Thus, a sleep stage may be predicted for
each individual sample of the EOG signal.

[0108] The method 200 may further comprise a step 240
of processing the estimated sleep stages to generate a
hypnogram for the subject. Approaches for producing a
hypnogram from a plurality of estimated sleep stages will be
readily apparent to the skilled person. In particular, it will be
appreciated that each estimated sleep stage is associated
with a sample, whose relative temporal position within the
EOG is known. Is it therefore possible to plot the estimated
sleep stages against time to produce a hypnogram.

[0109] It will be appreciated that the generated hypnogram
may be stored (e.g., in a memory or database), be displayed
(e.g., at a user interface or the like) and/or undergo further
processing (e.g., by a further processing system). The
method 200 may be appropriately adapted to include steps
for performing such processes.
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[0110] It has been previously described how an EOG
signal is processed by the machine-learning algorithm to
generate the predicted sleep stage for each of a plurality of
target samples of the EOG signal. As previously mentioned,
the electrooculography, EOG, signal is responsive to a
cornea-retinal standing potential between a front and a back
of the eye of the subject during the sleep session. Thus, an
EOG signal can effectively represent a signal component
coming from the eyes (an “EOG component™)

[0111] The EOG signal may be produced by an EOG
electrode that is placed sufficiently close to one or both eyes
such that the EOG electrode receives neurological signals
related to eye movement. An EOG electrode may be an
adhesive electrode (that is adhered to a particular location)
or a dry electrode (which relies upon direct contact with the
skin).

[0112] In preferred examples, the EOG signal is a single
EOG signal—e.g., produced by a single EOG electrode
(e.g., with respect to a reference value) or representing a
difference between two potentials measured by two different
EOG electrodes (e.g., positioned at either side of an eye).
The proposed architecture is advantageous in that it can be
readily adapted for use with a single EOG signal.

[0113] In some examples, the EOG signal comprises a
plurality of channels, e.g., each channel being produced or
generated by a different EOG electrode. For instance, the
EOG signal may comprise a first channel representing an
EOG response at a first eye and a second channel represent-
ing an EOG response at a second eye. Other variations will
be apparent to the skilled person (e.g., an additional channel
representing a differential between the EOG response in the
first eye and the second eye). An EOG response is a response
to a cornea-retinal standing potential between a front and a
back of the eye of the subject during the sleep session.

[0114] In general, an EOG signal produced by such an
EOG electrode may also be responsive to EEG information.
Thus, the (raw) EOG signal produced by an EOG electrode
may, in practice, comprise an EOG component (representing
a signal coming from the eyes) and an EEG component
(representing a signal coming from the cortex) It has tradi-
tionally been thought that such EEG information creates
noise that should be filtered out before processing, i.e., that
any EEG component should be filtered out.

[0115] However, in some embodiments of the proposed
approach, the EOG signal processed by the machine-learn-
ing algorithm has not undergo filtering of any EEG infor-
mation. In other words, no preprocessing steps to filter out
contamination of the EOG signal by EEG are performed.

[0116] On the contrary, in some embodiments, the method
200 may actively exploit the fact that such contamination
happens. The machine-learning algorithm is effectively able
to perform decomposition of the measured signal into the
components coming from the eyes and cortex as a result of
the identification of the other sample subset for the target
sample. This advantageously allows the use of additional
information, for predicting a sleep stage, that is historically
not been available or usable in sleep stage prediction tech-
niques.

[0117] One advantage of the herein proposed approach
method, is that it does not require (not per se “automatically”
achieve) an explicit decomposition between eye & cortical
components. Instead, it leverages commonalities, diver-
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gences, and other forms of “cross-information” that present
from either source without requiring an explicit separation
between the two sources.

[0118] The use of both traditional EOG and EEG infor-
mation is advantageous for the estimation of sleep stage(s),
as the signal component coming from the eyes (i.e., the EOG
component) is beneficial for Wake and Rapid Eye Move-
ment (REM) sleep classification, while the signal coming
from the cortex (i.e., the EEG component) can be used in
addition for Non-REM sleep classification: N1, N2, and N3.
For example, the accuracy of classifying N3 sleep is sig-
nificantly improved by the detection of slow-wave patterns
in the cortical signal.

[0119] FIG. 3 illustrates a method 300 for generating
temporal information for use in a machine-learning algo-
rithm. The method 300 may be performed by a processing
system, examples of which are later described.

[0120] The method 300 comprises a step 310 of receiving
a training EOG signal that is responsive to a cornea-retinal
standing potential between a front and a back of an eye of
a subject during a sample sleep session.

[0121] The method 300 also comprises a step 320 of
receiving a sleep stages reference input representative of
sleep stages during the sample sleep session.

[0122] The method 300 also comprises a step 330 of
processing samples of the training EOG signal and the sleep
stages reference input to determine temporal dependencies
between the samples of the EOG signal.

[0123] The method 300 also comprises a step 340 of
generating the temporal information responsive to the deter-
mined temporal dependencies.

[0124] Steps 340 may be performed by performing an
iterative process to iteratively update the machine-learning
algorithm. The iterative process may comprise modifying
one or more values (i.e., learnable values) of the machine-
learning algorithm, which together form the temporal infor-
mation. The iterative process also comprises a step of
processing the training EOG signal using the machine-
learning algorithm to identify, for each of a plurality of target
samples of the training EOG signal, a sample subset. The
iterative process may also comprise using a cost function
may be used to score the generation of the sample subsets
using the determined temporal dependencies between the
samples of the EOG signal.

[0125] The skilled person would be readily capable of
developing a processing system for carrying out any herein
described method. Thus, each step of the flow chart may
represent a different action performed by a processing
system, and may be performed by a respective module of the
processing system.

[0126] Embodiments may therefore make use of a pro-
cessing system.
[0127] The processing system can be implemented in

numerous ways, with software and/or hardware, to perform
the various functions required. A processor is one example
of a processing system which employs one or more micro-
processors that may be programmed using software (e.g.,
microcode) to perform the required functions. A processing
system may however be implemented with or without
employing a processor, and also may be implemented as a
combination of dedicated hardware to perform some func-
tions and a processor (e.g., one or more programmed micro-
processors and associated circuitry) to perform other func-
tions.
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[0128] The machine-learning method used by the process-
ing system may be stored on the processing system itself
(e.g., in a memory stored in the processing system) or may
be stored and/or executed on an external system.
Approaches for storing a machine-learning method and
executing or running a machine-learning method using a
processing system will be readily apparent to the suitably
skilled person.

[0129] Examples of processing system components that
may be employed in various embodiments of the present
disclosure include, but are not limited to, conventional
microprocessors, application specific integrated circuits
(ASICs), and field-programmable gate arrays (FPGAs).
[0130] In various implementations, a processor or process-
ing system may be associated with one or more storage
media such as volatile and non-volatile computer memory
such as RAM, PROM, EPROM, and EEPROM. The storage
media may be encoded with one or more programs that,
when executed on one or more processors and/or processing
systems, perform the required functions. Various storage
media may be fixed within a processor or processing system
or may be transportable, such that the one or more programs
stored thereon can be loaded into a processor or processing
system.

[0131] In particular, the one or more storage media may
store the machine-learning method that is used or executed
by the processing system in order to carry out embodiments
of'the proposed approach. Of course, the one or more storage
media may store the temporal information generated by
other example embodiments herein proposed.

[0132] It will be understood that disclosed methods are
preferably computer-implemented methods. As such, there
is also proposed the concept of a computer program com-
prising code means for implementing any described method
when said program is run on a processing system, such as a
computer. Thus, different portions, lines or blocks of code of
a computer program according to an embodiment may be
executed by a processing system or computer to perform any
herein described method.

[0133] There is also proposed a non-transitory storage
medium that stores or carries a computer program or com-
puter code that, when executed by a processing system,
causes the processing system to carry out any herein
described method.

[0134] In some alternative implementations, the functions
noted in the block diagram(s) or flow chart(s) may occur out
of the order noted in the Figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved.

[0135] Variations to the disclosed embodiments can be
understood and effected by those skilled in the art in
practicing the claimed invention, from a study of the draw-
ings, the disclosure and the appended claims. The mere fact
that certain measures are recited in mutually different depen-
dent claims does not indicate that a combination of these
measures cannot be used to advantage.

[0136] In the claims, the word “comprising” does not
exclude other elements or steps, and the indefinite article “a”
or “an” does not exclude a plurality. If the term “adapted to”
is used in the claims or description, it is noted the term
“adapted to” is intended to be equivalent to the term “con-
figured to”. If the term “arrangement” is used in the claims
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or description, it is noted the term “arrangement” is intended
to be equivalent to the term “system”, and vice versa.
[0137] A single processor or other unit may fulfill the
functions of several items recited in the claims. If a com-
puter program is discussed above, it may be stored/distrib-
uted on a suitable medium, such as an optical storage
medium or a solid-state medium supplied together with or as
part of other hardware, but may also be distributed in other
forms, such as via the Internet or other wired or wireless
telecommunication systems.

[0138] Any reference signs in the claims should not be
construed as limiting the scope.

1. A processing system for estimating sleep stages of a
subject during a sleep session, the processing system being
configured to use a machine-learning algorithm configured
to:

receive an electrooculography, EOG, signal that is respon-

sive 1o a cornea-retinal standing potential between a
front and a back of the eye of the subject during the
sleep session,

wherein the EOG signal is produced by an EOG electrode,

wherein the EOG signal comprises an EOG component

and an EEG component,

wherein the EOG component represents a signal from the

eye,

wherein the EEG component represents a signal from a

cortex; and

for each target sample of a plurality of target samples of

the EOG signal:

identify, based on the EOG component and the EEG
component, as an other sample subset, a subset of
one or more other samples in the EOG signal (SD)
using temporal information to identify temporal
dependencies between samples of the EOG signal,
wherein the temporal information is defined by a
training of the machine-learning algorithm; and

estimate a sleep stage associated with the target sample
by processing the sample and the other sample
subset.

2. The processing system of claim 1, wherein the
machine-learning algorithm employs an attention-based
mechanism to identify, for each target sample, the other
sample subset.

3. The processing system of claim 2, wherein the
machine-learning algorithm employs a positional encoding
scheme to provide for each target sample an absolute loca-
tion and a relative location relative to the other samples.

4. The processing system of claim 3, wherein the training
of the machine-learning algorithm comprises learning the
temporal information at arbitrary time-scales based on the
positional encoding scheme and the attention-based mecha-
nism.

5. The processing system of claim 1, wherein the
machine-learning algorithm is configured to, for each target
sample, estimate a sleep stage associated with the target
sample responsive to a dependency between the timing of
the target sample, within the sleep session, and the timing of
each other sample in the other sample subset.

6. The processing system of claim 5, wherein the
machine-learning algorithm is configured to, for each target
sample, estimate a sleep stage associated with the target
sample responsive to a timing of the target sample within the
sleep session.
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7. The processing system of claim 1, wherein the
machine-learning algorithm is further configured to:

use the temporal information to generate characterizing

information for each sample in the EOG signal, includ-
ing the plurality of target samples; and

for each target sample, identify the other sample subset by

identifying, as the other sample subset, one or more
other samples sharing matching characterizing infor-
mation to the target sample.

8. The processing system of claim 1, wherein the
machine-learning algorithm is a neural network having a
transformer architecture.

9. The processing system of claim 1, wherein the input to
the machine-learning algorithm consists of only the EOG
signal.

10. The processing system of claim 1, wherein the EOG
signal is received by the machine-learning algorithm after
the sleep session.

11. The processing system of claim 1 further configured to
process the estimated sleep stages to generate a hypnogram
for the subject.

12. A processing system for generating temporal infor-
mation for use in a machine-learning algorithm for estimat-
ing sleep stages of a subject during a sleep session, the
processing system being configured to:

receive a training EOG signal that is responsive to a

cornea-retinal standing potential between a front and a
back of an eye of a subject during a sample sleep
session,

wherein the EOG signal is produced by an EOG electrode,

wherein the EOG signal comprises an EOG component

and an EEG component,

wherein the EOG component represents a signal from the

eye,

wherein the EEG component represents a signal from a

cortex;
receiving a sleep stages reference input representative of
sleep stages during the sample sleep session; and

process, based on the EOG component and the EEG
component, samples of the training EOG signal and the
sleep stages reference input to determine temporal
dependencies between the samples of the EOG signal;
and

generate the temporal information responsive to the deter-

mined temporal dependencies.

13. A computer-implemented method for estimating sleep
stages of a subject during a sleep session, the computer
implemented method comprising using a machine-learning
algorithm configured to:

receive an electrooculography, EOG, signal that is respon-

sive 1o a cornea-retinal standing potential between a
front and a back of the eye of the subject during the
sleep session,

wherein the EOG signal is produced by an EOG electrode,

wherein the EOG signal comprises an EOG component

and an EEG component,

wherein the EOG component represents a signal from the

eye,

wherein the EEG component represents a signal from a

cortex; and

for each sample of a plurality of samples of the EOG

signal:
identify, based on the EOG component and the EEG
component, as an other sample subset, a subset of
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one or more other samples in the EOG signal using
temporal information to identify temporal dependen-
cies between samples of the EOG signal, wherein the
temporal information is defined by a training of the
machine-learning algorithm; and

estimate a sleep stage associated with the sample by
processing the sample and the other sample subset.

14. The computer-implemented method of claim 13,
wherein the machine-learning algorithm is configured to, for
each sample, estimate a sleep stage associated with the
sample responsive to a dependency between the timing of
the sample, within the sleep session, and the timing of each
other sample in the other sample subset.

15. A computer program product comprising computer
program code means which, when executed on a computing
device having a processing system, cause the processing
system to perform all of the steps of the method according
to claim 1.
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