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ABSTRACT
Rapid-eye-movement (REM) sleep behaviour disorder (RBD) is a primary sleep disorder strongly associated with Parkinson's dis-
ease. Assessing sleep structure in RBD is important for understanding the underlying pathophysiology and developing diagnostic 
methods. However, the performance of automated sleep stage classification (ASSC) models is considered suboptimal in RBD, for 
both models utilising neurological signals (“ExG”: EEG, EOG, and chin EMG) and heart rate variability combined with body 
movements (HRVm). Here, we explore this underperformance through the categorical representation of sleep macrostructure 
(i.e., hypnogram) and a representation that leverages the underlying probability distribution of ASSCs (i.e., hypnodensity). By 
comparing the RBD population (n = 36) to a sex- and age-matched group of OSA patients chosen for their anticipated similarly 
decreased sleep stability, we confirm lower 4-stage classification performance in both ExG-based ASSC (RBD: κ = 0.74, OSA: 
κ = 0.80) and HRVm-based ASSC (RBD: κ = 0.50, OSA: κ = 0.63). Stages showing lower agreement in RBD, namely, N1 + N2 and 
REM sleep, exhibited elevated ambiguity in the hypnodensity, indicating more ambiguous classification distributions. Limited 
differences in bout durations between RBD and OSA suggested sleep instability is not necessarily driving lower agreement in 
RBD. However, stage transitions in OSA showed more abrupt changes in the underlying probability distribution, while RBD 
transitions had a more continuous profile, possibly complicating classification. Although both ExG-based and HRVm-based au-
tomated sleep staging in RBD remain challenging, hypnodensity analysis is informative for the characterisation of (RBD) sleep 
and can capture potential drivers of classification disagreement.

1   |   Introduction

Rapid-eye-movement (REM) sleep behaviour disorder (RBD) 
is a parasomnia characterised by dream-enacting behaviour 
through movement and vocalisation caused by the loss of the 
normal muscle atonia during REM sleep (Boeve et al. 2007). In 

the absence of other associated medical conditions during diag-
nosis, RBD is categorised as isolated RBD (iRBD) (Sateia 2014). 
In recent years, iRBD has been recognised as a prodromal 
marker for α-synucleinopathies: long-term follow-up studies 
show that most RBD patients develop Parkinson's Disease (PD), 
with a conversion rate above 90% (Galbiati et  al.  2019; Iranzo 
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et al. 2014; Schenck et al. 2013). Hence, interest in monitoring 
sleep in RBD is growing, but achieving reliable sleep measures 
appears more challenging than in other populations.

Conventionally, sleep is assessed with single-night poly-
somnography (PSG). Information from the electroenceph-
alography (EEG), chin electromyography (EMG), and 
electrooculography (EOG) is employed to manually assign one 
of the five stages (Wake/N1/N2/N3/REM) to each 30-s epoch 
(Troester et al. 2023). Given the time-consuming nature of man-
ual scoring, many automated sleep stage classification (ASSC) 
models have been developed, mainly utilising neurological ac-
tivity. Such models, hereafter referred to as “ExG-based ASSC,” 
can reach comparable or even superior inter-rater reliability 
compared with manual scorers (Bakker et  al.  2023; Fiorillo 
et al. 2019). Indicators of sleep extend beyond neurological activ-
ity, encompassing various physiological processes, including the 
autonomic nervous system (Trinder et al. 2001). Hence, a second 
common group of ASSC models utilises the expression of sym-
pathetic and parasympathetic activation in heart rate variability 
(HRV), often combined with measures of body movement de-
rived from accelerometry to distinguish between wake and sleep. 
We will refer to these models as HRV and movement-based, or 
HRVm-based ASSC. Although these models may demonstrate 
lower sleep staging performance than their ExG-based counter-
parts (Fonseca et al. 2023; Korkalainen et al. 2020a; Wulterkens 
et al. 2021), they can fulfil a distinct purpose: by leveraging less 
obtrusive sensors such as patches and wrist-worn devices (Sartor 
et al. 2018; Zavanelli et al. 2021), they enable the measurement 
of sleep for extended periods of time.

The expression of sleep in cortical and autonomic processes may 
be impaired in RBD due to the (early) presence of neurodegen-
eration and autonomic dysfunction linked to α-synucleinopathy. 
ExG-based ASSC models, including combined EEG, EOG, and 
chin EMG, combined EEG and EOG, single-channel EEG, and 
single-channel EOG, all reported decreased performance in 
RBD as compared to healthy sleepers, to patients with insom-
nia, OSA, and to heterogeneous sleep-disordered populations 
(Andreotti et  al.  2018; Cesari et  al.  2024; Cooray et  al.  2019; 
Cooray et  al.  2021; van der Aar et  al.  2024). Similarly, in 
HRVm-based ASSC models, the lowest agreement across sleep 
disorders is observed in a REM parasomnia cohort which pri-
marily included RBD patients (Fonseca et al. 2020; Wulterkens 
et al. 2021). Furthermore, ASSC has revealed increased (REM) 
sleep instability in RBD, with more stage transitions and shorter 
REM bout durations (i.e., consecutive time spent in a sleep 
stage), potentially complicating classification performance 
(Christensen et al. 2016).

In general, we enforce categorical decisions upon the ASSC 
models by requiring the assignment of a single sleep stage to 
each epoch based on the class with the highest probability. This 
mirrors the process in manual scoring and produces a discrete 
hypnogram. The current body of work on RBD sleep staging 
performance and sleep stability in RBD relies on the analysis 
of these hypnograms. However, ASSCs offer novel opportuni-
ties for the representation of sleep structure. A currently mostly 
unexploited benefit of ASSCs is their ability to utilise the un-
derlying sleep stage probability distributions provided by the 
model, referred to as the hypnodensity (Stephansen et al. 2018). 

Hypnodensity distributions may provide a more nuanced 
view of sleep structure compared to the categorical decisions. 
Furthermore, hypnodensities represent inter-rater variability 
observed in manual scoring, enabling the exploration of ambi-
guity in sleep scoring without requiring multiple manual scorers 
(Bakker et al. 2023; Huijben et al. 2023; Stephansen et al. 2018). 
Hypnodensity-derived ambiguity quantification has previously 
been used to estimate classification uncertainty (Mikkelsen 
et al. 2020; Phan et al. 2022), and may help understand why ele-
vated disagreement between manual scoring and ASSC occurs 
in RBD. In addition, hypnodensity analysis can quantify the 
epoch-to-epoch change in the underlying probability distribu-
tion during stage transitions (i.e., transition continuity), allowing 
characterisation of previously observed decreased sleep stability 
in RBD (Christensen et al. 2016). Moreover, a recent study has 
shown that applying image recognition on hypnodensities can 
be used to discriminate between patients with RBD and con-
trols, suggesting the hypnodensities of patients with RBD may 
hold clinically relevant information (Feuerstein et al. 2024).

In this study, we aim to first confirm earlier findings on de-
creased sleep staging performance in both ExG-based and 
HRVm-based ASSC models. Next, we study whether decreased 
sleep stability is observed in the RBD population using the dis-
crete representation of sleep stages (i.e., the hypnograms). Last, 
and most importantly, we use a probability-based approach 
by deriving ambiguity and continuity measures from the hyp-
nodensities. We explore whether such measures can improve 
our understanding of RBD sleep staging and of the observed 
sleep macrostructure in RBD when using automated models 
that leverage different physiological processes.

2   |   Methods

2.1   |   Data

We sampled data from the PSG recordings of the Sleep and 
Obstructive Sleep Apnea Measuring with Non-Invasive 
Applications (SOMNIA) database recorded before January 
2021 (van Gilst et  al.  2019). SOMNIA data were acquired at 
the Kempenhaeghe Center for Sleep Medicine (Heeze, the 
Netherlands) among individuals scheduled for an overnight PSG 
as part of the standard clinical routine. Each PSG recording was 
manually annotated by a single scorer, out of a pool of trained 
technicians, in accordance with AASM standards (Berry 
et al. 2017). Guidelines active in 2021 were used for the scoring 
of REM sleep in subjects with (suspected) RBD. Manual scoring 
was converted to a 4-stage classification for the current study 
by combining N1 and N2 (Wake/N1 + N2/N3/REM). Sleep dis-
order diagnoses were coded according to the criteria specified 
in the International Classification of Sleep Disorders version 3 
(ICSD-3) (Sateia 2014). Guidelines active in 2021 were used for 
REM scoring in subjects with (suspected) RBD, but no major 
differences with the most recent guidelines are expected (Cesari 
et al. 2022).

We assembled two groups, an RBD group, and a mild-to-
moderate OSA control group. The OSA control group was se-
lected because of the presence of disturbed sleep and similar 
increased sleep fragmentation, but where fragmentation is not 
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necessarily attributed to impaired sleep regulation (Bianchi 
et  al.  2010; Korkalainen et  al.  2020b; Mannarino et  al.  2012). 
Moreover, the selected population allowed us to sample a control 
group from the same database using age matching since ageing 
can negatively impact sleep staging performance (Wulterkens 
et al. 2021). For the RBD group, we first included all available 
subjects with RBD as the primary diagnosis. From the available 
RBD patients, we excluded two subjects with comorbid severe 
OSA, defined by an apnea-hypopnea (AHI) above 30. Severe 
OSA patients were excluded because of the expected and ob-
served excessive levels of sleep fragmentation. For 20 out of the 
36 RBD subjects, the RBD was isolated, while in 16 subjects the 
RBD was secondary due to the presence of parkinsonism. For 
the OSA control group, only patients with mild-to-moderate 
OSA (5 < AHI < 30) and without any other known sleep comor-
bidities were selected. Positive airway pressure (PAP) devices 
were not used during the PSG. Age matching was performed by 
randomly selecting an OSA subject for each RBD subject, with 
an age difference ≤ 5 years for each match.

2.2   |   ExG-Based ASSC

Somnolyzer is a supervised deep learning ASSC model that 
classifies 30-s epochs as either Wake, N1, N2, N3 or REM sleep 
(Anderer et al. 2022). All available frontal, central and occipital 
EEG channels (F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-M2), 
left and right EOG channels (E1-M2, E2-M2), and one chin EMG 
derivation (Chin1–ChinZ) were used for input (further referred 
to as ExG-based ASSC), which were acquired at 512 Hz. Filtering 
was performed according to the AASM standards for EEG 
(0.3–35 Hz), EOG (0.3–35 Hz), and EMG (0.3–100 Hz), including 
a 50 Hz notch filter. The Somnolyzer model has been validated 
in 426 PSGs across multiple sleep-disordered datasets, showing 
a 0.74 Cohen's Kappa agreement coefficient (κ) (Cohen  1960) 
versus manual scoring for the 5-stage comparison (Anderer 
et al. 2022). Furthermore, analysis in six, nine and twelve man-
ual scorers has revealed higher agreement between Somnolyzer 
and manual scoring than between individual manual scor-
ers and their consensus vote (Bakker et  al.  2023). Recently, 
Somnolyzer was approved by the AASM autoscoring certifica-
tion program (https://​aasm.​org/​about/​​indus​try-​progr​ams/​autos​
corin​g-​certi​ficat​ion/​). Notably, due to the hierarchical structure 
of Somnolyzer, it is possible for a stage to be classified despite not 
having the highest probability. We refer to the original work for 
more information (Anderer et al. 2022). For the present study, 
after performing classification with Somnolyzer on the complete 
dataset, the N1 and N2 stages, as well as their hypnodensity-
derived probabilities, were combined in a single N1 + N2 stage 
to obtain a 4-stage classification (Wake/N1 + N2/N3/REM) to 
allow direct comparison with the HRVm-based ASSC.

2.3   |   HRVm-Based ASSC

The present study made use of a previously trained and de-
scribed neural network developed for 4-stage (W/N1 + N2/N3/
REM) sleep classification based on cardiac activity and body 
movements (further referred to as HRVm-based sleep staging) 
(Fonseca et  al.  2023). For this study, input signals were de-
rived from a wrist-worn watch-like device (Sartor et  al.  2018) 

containing reflective photoplethysmography using two green 
LED sources (32 Hz) and triaxial accelerometry (128 Hz) sensors, 
an earlier prototype of the Philips Healthband (Royal Philips, 
Amsterdam, The Netherlands). For the current study, we have 
applied the previously trained model as is, without any retrain-
ing (Fonseca et al. 2023). This model has been trained on PSGs 
with concurrent PPG and accelerometry recordings from vari-
ous datasets (van Gilst et al. 2019; Klosh et al. 2001; van Meulen 
et al. 2023; Punjabi et al. 2015) containing both healthy subjects 
and sleep-disordered patients (n = 1113). This model has shown 
a κ = 0.64 versus manual scoring in a hold-out validation set 
(n = 394) containing also a heterogeneous pool of healthy sub-
jects and sleep-disordered patients (Fonseca et al. 2023), higher 
than most reported HRVm-based ASSC models, which typically 
have been validated exclusively in healthy sleepers.

2.4   |   REM Atonia Index

The REM atonia index (RAI) was implemented for the auto-
mated detection of REM sleep without atonia (RSWA), result-
ing in one RAI value per subject which indicates reduced (RAI 
< 0.8), ambiguous (0.8 < RAI < 0.9), and non-substantial (RAI 
> 0.9) loss of atonia (Cesari et  al.  2018; Ferri et  al.  2010). The 
Chin1-ChinZ EMG derivation was used, substituted by the 
Chin2-ChinZ in case of large, visually observed artefacts. No 
further artefact removal was applied. Signals were bandpass 
filtered between 10 and 100 Hz, including a 50 Hz Notch filter, 
sampled at 512 Hz.

2.5   |   Outcome Measures

To measure the performance of the ASSC models, we analysed 
the agreement between manual scoring and ExG-based ASSC, 
as well as between manual scoring and HRVm-based ASSC. 
Overall ASSC performance was calculated using the Kappa sta-
tistic, a multi-class classification metric that accounts for the 
possibility of correct classification by chance (Cohen  1960). 
Besides overall ASSC performance for 4-stage classification, 
additional 5-stage performance for the ExG-based ASSC is per-
formed to allow comparison with published kappa values. Sleep 
stage-specific ASSC performance was calculated using the per-
class F1-scores to simultaneously capture the sensitivity and 
positive predictive value (PPV) of the model.

Sleep stability was measured using bout duration, defined as the 
consecutive time spent in a sleep stage without a transition to 
another sleep stage, as indicated by each of the sleep-scoring 
methods.

Ambiguity in the hypodensity was calculated using a normalised 
version of the Shannon entropy (Shannon  1948), which mea-
sures the spread of a probability distribution using the following 
formula:

where i corresponds to each sleep stage class, and p(xi) to the 
probability of sleep stage i for a given epoch. By dividing Shannon 

Ambiguity = −
1

log(4)

∑

i

p
(
xi
)
log p

(
xi
)
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entropy by log(4), since we perform 4-stage classification, the en-
tropy is normalised to a value between 0 and 1. When all but one 
sleep stage have a probability of 0, the entropy of that epoch will 
be 0. When all sleep stages have an equal probability, that epoch 
will have an entropy of 1. Entropy > 0.5 is only obtained when a 
non-zero probability is given to at least three sleep stages, while 
entropy > 0.79 is only achieved when a non-zero probability is 
given to all four sleep stages.

Transition continuity in the hypnodensity of ExG-based and 
HRVm-based ASSC was calculated when the hypnogram of the 
corresponding automated model indicated a sleep stage tran-
sition. Transition continuity was defined as the change in the 
probability distribution between the epoch before and the epoch 
after the stage transition, using the following formula:

where p(xi) resembles the probabilities given to each sleep stage 
in a certain epoch. The formula calculates the sum of the ab-
solute differences (i.e., for all sleep stages) in probability values 
between two adjacent epochs which represent a sleep stage 
transition. By multiplying the outcome by half and deducting 
it from 1, continuity is normalised to a value between 0 and 1. 
When there is maximum change in the probability distribution 
between two adjacent epochs during a stage transition, the con-
tinuity is 0, while continuity is 1 when there is no change.

2.6   |   Statistical Comparisons

For each analysis of the outcome measures, comparisons be-
tween the RBD and OSA groups within each scoring method 
were made, followed by a comparison between scoring meth-
ods. To correct for multiple testing, a Benjamini-Hochberg cor-
rection was applied, allowing for a false discovery rate of 10% 
(Benjamini and Hochberg 1995). Adjusted p values were calcu-
lated by multiplying the p value by the total number of tests and 

dividing by its rank, correcting for any non-decreasing order 
(Yekutieli and Benjamini 1999). T-tests were performed to study 
differences in Kappa between ExG-based and HRVm-based 
overall ASSC performance, as well as between RBD and OSA 
groups. For all other outcome measures, due to the non-normal 
distribution of data (Shapiro–Wilk test, not further reported), 
non-parametric tests were performed, and the rank-biserial cor-
relation was reported as effect size (Kerby 2014). For sleep sta-
bility, a Friedman test was performed in advance to compare the 
three scoring methods.

3   |   Results

3.1   |   Clinical and Demographic Data

We assessed sleep recordings of 36 RBD and 36 age- and sex-
matched OSA subjects. An overview of the clinical and demo-
graphic data, as well as the sleep statistics derived from manual 
scoring, can be found in Table 1. As expected for AHI, signifi-
cant differences between groups were observed, although AHI 
was also mildly elevated in the RBD group (RBD: 9.7; OSA: 19.2). 
For the RBD group, the most common sleep disorder comor-
bidities included mild-to-moderate OSA (n = 13; 5 > AHI > 30, 
excluding subjects with AHI > 30), insomnia (n = 6), and peri-
odic limb movement disorder (n = 3). Hypersomnia, restless legs 
syndrome, delayed sleep–wake phase disorder, and sleep-related 
laryngospasm were present in one subject each.

3.2   |   ASSC Performance

For ExG-based 4-stage ASSC, in comparison with the OSA 
group, the RBD group presented a significantly lower Kappa 
(κ = 0.74 ± 0.11 versus κ = 0.80 ± 0.08 for OSA) and significantly 
lower median F1-scores for N1 + N2 and REM sleep classification. 
For HRVm-based 4-stage ASSC, a similar pattern was observed: 
in comparison with the OSA group, RBD presented a signifi-
cantly lower Kappa score (κ = 0.50 ± 0.16 versus κ = 0.63 ± 0.14 

Transition continuity = 1 −
1

2

∑

i

|
||
p
(
xi(t)

)
− p

(
xi(t + 1)

)|
||

1
1

TABLE 1    |    Demographic information and sleep statistics derived from manual scoring of the 36 RBD and 36 OSA subjects, including statistical 
differences between the groups denoted by an asterisk when significant after adjusting p values for multiple testing. No tests were performed on 
age and sex since groups were matched on these characteristics. Means and standard deviations are reported, except for AHI, where medians and 
interquartile ranges are shown.

RBD (n = 36) OSA (n = 36) Statistical comparison

Age (yrs.) 66.0 ± 6.5 64.0 ± 6.8

Sex (m/f) 26/10 26/10

AHI 9.7 (12.3) 19.2 (13.3) U = 379, p = 0.002, adj-p(1) = 0.02*

BMI 25.9 ± 3.6 26.8 ± 4.1 T = 0.87, p = 0.39, adj-p(5) = 0.54

Time in Bed (min.) 497 ± 38 508 ± 47 T = 1.01, p = 0.32, adj-p(4) = 0.54

Stage W (%) 23.5 ± 12.8 20.3 ± 11.1 T = 1.14, p = 0.26, adj-p(2) = 0.54

Stage N1 + N2 (%) 51.2 ± 11.0 53.8 ± 9.3 T = 1.11, p = 0.27, adj-p(3) = 0.54

Stage N3 (%) 12.8 ± 6.9 13.8 ± 6.8 T = 0.63, p = 0.53, adj-p(6) = 0.62

Stage REM (%) 12.5 ± 5.6 12.1 ± 4.6 T = 0.38, p = 0.70, adj-p(7) = 0.70

Abbreviations: AHI, Apnea-hypopnea index; BMI, Body Mass Index.
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for OSA) and significantly lower median F1-scores for N1 + N2, 
N3, and REM classification. Lower agreement can be observed 
especially in REM classification for RBD as compared to OSA, 
decreasing by nearly 20%–30% in all comparisons. In RBD, man-
ually scored REM sleep was more frequently classified by the 
ASSCs as N1 + N2 sleep, leading to lower REM sensitivity and 
lower N1 + N2 PPV.

Detailed statistical analyses on differences between RBD and 
OSA in ASSC performance can be found in Table  S1 of the 
Supporting Information, including 5-stage overall perfor-
mance, and 4-stage overall and stage-specific performance. 
Furthermore, Figure S2 illustrates 4-stage classification confu-
sion matrices.

3.3   |   Sleep Stability

Figure 1 illustrates the distribution of all bout durations for each 
group and each scoring method in minutes per sleep stage, to-
talling 20,857 bouts. Wake bout durations were shorter for OSA 
in the ASSC methods, not in manual scoring. REM bout dura-
tions were shorter in RBD in ASSC methods, but again not in 
manual scoring. No significant differences were found for other 
bout duration comparisons between RBD and OSA. A detailed 
statistical comparison between RBD and OSA can be found in 
the Table S3.

To study differences in bout durations between scoring meth-
ods, the bout durations of all sleep stages and both populations 
within a scoring method were aggregated. Significant differ-
ences in bout durations were found among the three scoring 
methods (H(2) = 437.80, p < 0.001, η2 = 0.02). Post hoc analyses 
showed that bout durations were shorter in manual scoring 
(median: 1.0, interquartile range (IQR): 3.0) than in ExG-based 
ASSC (median: 2.0, IQR: 6.5; U = 2.45e7, p < 0.001, r = 0.15) 
and in HRVm-based ASSC (median: 2.0, IQR: 8.0; U = 2.07e7, 
p < 0.001, r = 0.18). Although both ASSC methods presented 
a median bout duration of two minutes, significantly shorter 

bouts were observed in ExG-based ASSC compared to HRVm-
based ASSC (U = 1.54e7, p = 0.008, r = 0.03). Sleep stage-specific 
analyses showed significant differences in all comparisons, 
except in wake, as illustrated in Figure 1. A detailed statistical 
comparison between scoring methods can be found in Table S4.

3.4   |   Ambiguity

Hypnodensity-derived ambiguity scores, calculated as the nor-
malised entropy of the classification probability distribution, 
were evaluated for a total of 114,902 epochs. Table 2 indicates 
the overall and sleep stage-specific statistical comparison be-
tween RBD and OSA. For both ASSC models, higher overall 
ambiguity was observed in RBD when compared to OSA. In 
ExG-based ASSC, sleep stage-specific ambiguity was higher for 
RBD in all sleep stages (N1 + N2, N3, and REM) except wake. 
In HRVm-based ASSC, ambiguity was higher for RBD in wake, 
N1 + N2, and REM, but lower in N3.

Figure  2 illustrates the distribution of hypnodensity-derived 
ambiguity in sleep stage classification for ExG-based and 
HRVm-based ASSC in both RBD and OSA, showing distinct 
distributions, especially for ambiguity in REM. Classification of 
REM sleep in RBD was accompanied by higher ambiguity in the 
probability distribution.

Regarding differences in overall ambiguity between the ASSC 
models, both in RBD and OSA, classification was less ambigu-
ous in ExG-based ASSC when compared to HRVm-based ASSC 
(U = 5.30e8, p < 0.001, r = 0.17 for RBD; U = 5.02e8, p < 0.001, 
r = 0.25 for OSA).

3.5   |   Transition Continuity

Figure 3 illustrates the transition continuity obtained using the 
ExG-based and HRVm-based models for both RBD and OSA. 

FIGURE 1    |    Distribution of bout durations for each of the sleep staging methods, visualised per sleep stage for RBD and OSA. Sleep staging meth-
ods included manual scoring (white), ExG-based ASSC (light grey), and HRVm-based ASSC (dark grey). For differences between RBD and OSA 
within scoring methods, adjusted p values are shown when significant. For between-method comparisons, differences are denoted by an asterisk 
when bout durations significantly differ (after adjustment) from the other two methods.

 13652869, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.70046, W

iley O
nline L

ibrary on [13/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 13 Journal of Sleep Research, 2025

Continuity scores were evaluated for a total of 10,382 sleep stage 
transitions.

Sleep stage transitions in RBD (median: 0.888, IQR: 0.321) 
showed higher continuity when compared to OSA (median: 
0.873, IQR: 0.430) for ExG-based ASSC (U = 3.53e6, p = 0.002, 
r = 0.05). Similarly, for HRVm-based ASSC, higher continuity 
was observed in RBD (median: 0.678, IQR: 0.370) than in OSA 
(median: 0.624, IQR: 0.405; U = 3.69e6, p < 0.001, r = 0.10). 
Hence, in OSA, sleep stage transitions showed larger changes 
in the probability distribution of the hypnodensity than 
in RBD.

Regarding differences in transition continuity between the ASSC 
models, higher continuity was observed in ExG-based ASSC 
when compared to HRVm-based ASSC in both RBD (U = 4.60e6, 
p < 0.001, r = 0.42) and in OSA (U = 4.80e6, p < 0.001, r = 0.38). 
Hence, ExG-based ASSC transitions are associated with smaller 
changes in the probability distribution.

Notably, the ExG-based ASSC shows a larger percentage of 
stage transitions with either very low or very high continuity 
compared to the HRVm-based ASSC. When averaged over both 
populations, the ExG-based ASSC exhibits roughly four times 
as many stage transitions with continuity below 0.05 (4.18% vs. 
1.09%) and about 11 times as many stage transitions with con-
tinuity above 0.95 (36.07% vs. 3.36%). Hence, stage transitions 
in the ExG-based ASSC are more often associated with either 
small changes (i.e., high continuity) or large changes (i.e., low 
continuity) in the probability distribution.

4   |   Discussion

This study aimed to characterise RBD sleep and improve un-
derstanding of RBD sleep staging by analysing the hypnograms 
and hypnodensities of two automated sleep stage classification 
(ASSC) models. These models leverage different physiological 

processes (cortical vs. autonomic) that are potentially impaired 
in individuals with RBD. We confirm earlier findings that the 
agreement of ASSC models with manual scoring is generally 
worse in RBD: for both ExG-based and HRVm-based ASSC, 
suboptimal performance was found in RBD when compared 
to age- and sex-matched OSA patients. Limited differences 
between RBD and OSA were observed in bout durations, sug-
gesting that sleep instability is not necessarily driving lower 
scoring agreement in RBD. However, stage transitions in OSA 
were associated with more abrupt changes in the probability 
distribution, while RBD transitions had a more continuous pro-
file, which potentially complicates stage classification in RBD. 
Furthermore, sleep stages that showed lower performance in 
RBD, namely N1 + N2 and REM, exhibited higher ambiguity in 
the hypodensity, indicating more spread in probabilities during 
classification.

4.1   |   ASSC Performance

For ExG-based ASSC, a large contributor to the lower sleep 
staging agreement in RBD was the misclassification of REM 
sleep as N1 + N2. Decreased REM sensitivity is well described 
in the literature (Andreotti et al. 2018; Cooray et al. 2019; van 
der Aar et al. 2024) and is, at least to some extent, attributed to 
REM sleep without atonia (RSWA), a distinct characteristic of 
RBD reflecting underlying pathophysiology (Boeve et al. 2007; 
Sateia 2014). The current study confirms these findings by re-
porting a positive relationship between the RAI and the agree-
ment on REM classification (Figure S5). Interestingly, although 
the HRVm-based ASSC model targets different physiological 
processes to measure sleep, similar patterns in terms of sleep 
stage-specific performance were observed as with ExG-based 
ASSC, again showing pronounced misclassification of REM 
sleep as N1 + N2. Possibly, this phenomenon can be attributed 
to RSWA as well. While the co-occurrence of sympathetic acti-
vations and body movements can be present during non-REM 
sleep (e.g., during arousals) (Tobaldini et al. 2013), in RBD, the 

TABLE 2    |    Statistical differences between RBD and OSA in hypnodensity-derived ambiguity for both ExG-based ASSC (left) and HRVm-based 
ASSC (right). Ambiguity scores of all subjects within a population were aggregated; median values and interquartile ranges are reported. Sleep stages 
were split based on the classification of the ExG-based and HRVm-based ASSC models, not by manual scoring. Significant differences after multiple 
testing adjustment are denoted by an asterisk.

Stage

Ambiguity in ExG-based ASSC Ambiguity in HRVm-based ASSC

RBD OSA Statistical comparison RBD OSA Statistical comparison

Overall
(4-classes)

0.144 (0.355) 0.100 (0.277) U = 7.23e8, p < 0.001, 
adj-p(2) < 0.001*, r = 0.10

0.239 (0.353) 0.216 (0.333) U = 6.83e8, p < 0.001, 
adj-p(7) < 0.001*, r = 0.04

Wake 0.078 (0.160) 0.078 (0.173) U = 3.17e7, p = 0.97, 
adj-p(10) = 0.97, r = 0.00

0.142 (0.361) 0.219 (0.377) U = 2.74e7, p < 0.001, 
adj-p(6) < 0.001*, r = 0.14

N1 + N2 0.141 (0.353) 0.096 (0.276) U = 2.03e8, p < 0.001, 
adj-p(3) < 0.001*, r = 0.12

0.238 (0.325) 0.197 (0.309) U = 1.97e8, p < 0.001, 
adj-p(5) < 0.001*, r = 0.09

N3 0.344 (0.350) 0.277 (0.358) U = 1.26e7, p < 0.001, 
adj-p(8) < 0.001*, r = 0.10

0.226 (0.307) 0.261 (0.310) U = 1.10e7, p < 0.001, 
adj-p(9) < 0.001*, r = 0.04

REM 0.276 (0.441) 0.087 (0.285) U = 1.30e7, p < 0.001, 
adj-p(01) < 0.001*, r = 0.33

0.426 (0.358) 0.270 (0.385) U = 1.23e7, p < 0.001, 
adj-p(4) < 0.001*, r = 0.26
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simultaneous presence may also manifest during REM sleep due 
to the lack of muscle atonia, confusing the classifier. Notably, 
the chin EMG-derived RAI did not correlate with agreement on 
REM classification for HRVm-based ASSC (Figure S5), suggest-
ing a different expression of RSWA in the wrist-worn PPG and 
actigraphy acquired signals, but this should be further studied. 
Second, since REM sleep is characterised by an alternating pat-
tern of sympathetic and parasympathetic activity (Tobaldini 
et  al.  2013), it is possible that the presence of autonomic dys-
function as an early manifestation of α-synucleinopathy in RBD 
blunts the sympathetic response in these patients, complicating 

REM classification. We refer to the Supporting Information for 
a more extensive interpretation of the ASSC performance results 
in RBD and the comparison to similar methods.

4.2   |   Sleep Stability

In iRBD, the underlying pathophysiological mechanisms affect 
the brainstem at an early stage, impacting the inhibitory loops 
that regulate sleep and wake, potentially causing sleep insta-
bility (Luppi et al. 2011). When comparing RBD bout durations 

FIGURE 2    |    Distribution of hypnodensity-derived ambiguity in ExG-based ASSC (a) and HRVm-based ASSC (b) for RBD (blue) and OSA (red) 
groups, with overlapping distribution in purple. Ambiguity distribution is shown for all epochs (left) and sleep stage-specific (right), where the sleep 
stage corresponds with the sleep stage that the respective ASSC model classified. Y-axis shows percentage of epochs (aggregated over all subjects 
within a population), x-axis shows the ambiguity, measured as normalised entropy of the probability distribution in the hypnodensity.
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with a matched control OSA group also characterised by in-
creased instability (Bianchi et al. 2010; Korkalainen et al. 2020a; 
Mannarino et al. 2012), we found no or only small differences 
between groups. These results suggest that the number of tran-
sitions and consequently, the duration of uninterrupted sleep 
stage bouts are not necessarily driving the lower sleep staging 
performance we found in RBD. We only observed lower sleep 
stability in REM sleep of RBD patients using ExG-based and 
HRVm-based ASSC. This effect was not observed for manual 
scoring or in any of the other sleep stages. Interestingly, REM 
instability has been found previously in RBD when compared 
to healthy controls and patients with periodic limb movement 
disorder (PLMD), but also only in automated classification and 
not in manual scoring (Christensen et al. 2016), potentially be-
cause microstructural changes can be better captured by the 
ASSC models (Cesari et al. 2021). However, it is possible that the 
supposed REM instability is a mere byproduct of the ambiguity 
in the REM classification in RBD, which we further explored by 
analysing not the categorical classification of sleep stages (i.e., 
the hypnogram), but the underlying probability distribution (i.e., 
the hypnodensity).

Furthermore, large differences in bout durations were ob-
served between scoring methods, with the most transitions 
scored in manual and the fewest in HRVm-based sleep staging. 
Comparing median bout duration values to existing research is 
complicated by differences in methodology and stage catego-
rization, and by age- and disorder-specific effects (Arnardóttir 
et  al.  2010; Bianchi et  al.  2010; Klerman et  al.  2013; Wei 
et al. 2017). We hypothesise that the bout duration differences 
between manual scoring and automated ASSCs are mostly 
driven by short, non-consensus intrusions of other sleep stages. 

While individual manual scorers may label them, automated 
models function as a consensus voting system that solely rep-
resents the majority class, resulting in a smoother hypnogram. 
This phenomenon can be observed in Figure 4 and in previous 
literature reporting inter-rater agreement in relation to auto-
mated classification (Anderer et  al.  2022; Bakker et  al.  2023; 
van Gorp et al. 2023; Huijben et al. 2023). Moreover, the higher 
number of stage transitions scored in ExG-based ASSC com-
pared to HRVm-based ASSC could be attributed to the ability 
of the modality to detect brief stage-specific changes. For exam-
ple, while short wake intrusions are relatively easily detected in 
EEG as arousals, they may not present as clearly in autonomic 
nervous system activity.

4.3   |   Hypnodensity-Derived Characterisation

This study did not only assess the previously used method 
of utilising neurological signals for hypnodensity analysis 
(Stephansen et al. 2018), but we extended this approach by ap-
plying it to sleep staging using HRVm. For both the ExG-based 
and HRVm-based ASSC models, we found higher ambiguity as 
characterised with hypnodensity in the sleep scoring of RBD 
when compared to OSA, with especially large differences and 
distinct distributions in REM sleep. When epochs were classi-
fied as REM sleep by one of the automated models, there was 
more ambiguity, indicating a larger spread in the probability 
distribution in the RBD population. In this group, more epochs 
showed an ambiguity score above 0.5, suggesting that a non-
zero sleep stage probability was assigned to at least three sleep 
stages in these epochs, usually REM, wake and N1 + N2. An il-
lustrative example of this difference in REM sleep classification 

FIGURE 3    |    Distribution of sleep stage transition continuity in ExG-based (left) and HRVm-based sleep staging (right) for each transition epoch in 
the RBD (blue) and OSA (red) populations, with overlapping distribution in purple. Y-axis shows percentage of epochs (aggregated over all subjects 
within a population), x-axis shows the continuity score. Lower continuity indicates a larger change in the sleep stage probability distribution of the 
hypnodensity when the ASSC model indicates a sleep stage transition.
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between RBD and OSA can be found in Figure 5. At least for 
the ExG-based method, the REM ambiguity was associated 
with RSWA computed using the RAI detector (Figure S5), sug-
gesting the ambiguous distributions may reflect the presence 
of RSWA. However, whether the ambiguous distributions are 
inherent characteristics of RBD sleep or a current limitation 
of the used models remains unclear. First, it is possible that 
the uncertain distributions arise because human raters would 
also score these epochs ambiguously, that is, there is elevated 

inter-rater disagreement in these epochs (Bakker et al. 2023; 
Huijben et  al.  2023). Second, ambiguous distributions may 
arise because the signals lack information representative of 
specific sleep stages. These two interpretations can be classi-
fied as aleatoric uncertainty. Third, increased ambiguity may 
represent uncertainty about the model's ability to identify 
stage-specific characteristics because it lacked training ex-
amples representative of the observed patterns (epistemic un-
certainty) (van Gorp et al. 2022). Epistemic uncertainty may 

FIGURE 4    |    A representative example of sleep stage classification in a 66-year-old male patient with RBD and noticeable cognitive impairment, 
selected for the low REM classification agreement sleep in both automated ASSCs. Panel a shows the hypnogram obtained based on manual scor-
ing. Panels b–e show the hypnogram (b), hypnodensity (c), transition continuity (d), and ambiguity (e) of ExG-based ASSC; epochs with disagree-
ment with manual scoring are indicated as blue ticks. Panels f–i show the same measures for HRVm-based ASSC. The hypnodensities indicate the 
probability distributions of wake (dark grey), N1 + N2 (light blue-magenta), N3 (yellow), and REM (light red) sleep. Multiple study findings can be 
observed in the figure. First, manually scored REM sleep was often missed by the ASSCs as N1 + N2, lowering the REM sensitivity and N1 + N2 PPV. 
For this subject, higher REM probabilities were observed in the HRVm-based ASSC, but in general, higher REM probabilities were observed in the 
ExG-based ASSC, as indicated by the higher agreement of the ExG-based method with manual scoring. Second, most stage transitions are scored 
with manual scoring, and the least are transitions with HRVm-based ASSC. Third, disagreement between manual scoring and the ASSCs is gener-
ally associated with higher ambiguity. Fourth, relatively less disagreement is observed in when transition continuity was low (i.e., longer continuity 
bars indicate lower continuity values) compared to transitions with high continuity. The misclassification in ExG-based ASSC (panel b and c) during 
the first part of the night is likely not a feature of RBD but instead can be attributed to the mixing of pathological slow wave sleep during other sleep 
stages, including during REM sleep.
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be reduced by training a model specifically on a RBD popu-
lation or on earlier sleep recordings of the individual, meth-
ods which both improve classification agreement, including 
the detection of REM sleep (van der Aar et al. 2024; Andreotti 
et al. 2018). Moreover, comparing the hypnodensities of auto-
mated sleep stagers to the inter-rater variation in the manual 
scoring of RBD sleep recordings could infer additional infor-
mation about the existence of epistemic and aleatoric uncer-
tainty. In a previous study, it was shown that the ExG-based 
ASSC model used here captured ambiguity comparable with 
the inter-rater agreement of 6, 9 and 12 scorers in patients with 
sleep-disordered breathing (Bakker et  al.  2023). However, 
it is yet unknown whether this holds in an RBD population. 
Notably, since for Parkinson's Disease inter-rater agreement is 
lowest across all tested (sleep) disorders (Bliwise et al. 2000; 
Danker-Hopfe et al. 2004; Rosenberg and Van Hout 2013), we 
also expect lower inter-rater agreement in RBD, which may 
contribute to the differences between manual and automated 
scoring. Future work should investigate the relationship be-
tween the captured ambiguity in ASSCs tuned to RBD char-
acteristics and the inter-rater agreement of a large number of 
human scorers in the RBD population.

Finally, we used the probability distributions to characterise 
sleep stage transitions in RBD and OSA. Although we observed 
small differences in the number of transitions between groups, 
the continuity of the transitions did show differences. In the 
OSA group, transitions were accompanied by lower continuity 

in the hypnodensities of the ASSC models, manifested as a 
larger shift in the probability distribution. Possibly, these more 
abrupt shifts in sleep architecture are related to (apnea-induced) 
arousals prominently observed in OSA patients (Younes 2004), 
since higher AHI values were associated with lower continu-
ity for the ExG-based ASSC (Figure S6). Sample sizes were not 
large enough for analysis on specific sleep stage transitions, 
but we hypothesise these population differences are especially 
apparent in transitions affected by arousals, including transi-
tions from N3 to wake or N1 + N2. In contrast, RBD transitions 
showed a more continuous hypnodensity profile. An illustrative 
example of the differences in continuity between RBD and OSA 
can be observed in Figure 5. These differences may partly ex-
plain the generally lower sleep staging performance in the RBD 
group: slower, less pronounced shifts in sleep stage-specific 
patterns may lead to increased misclassification around transi-
tions. As illustrated in Figure 4, larger shifts in the probability 
distribution (i.e., lower continuity) help establish clearly differ-
ent patterns around transitions and lead to an overall increase 
in agreement between manual scoring and ASSC models. Such 
clear, unambiguous changes were four times more often pres-
ent in ExG-based ASSC compared to HRVm-based ASSC when 
considering very low continuity (> 0.05). Furthermore, min-
imal shifts in the probability distribution (continuity > 0.95) 
were 11 times more often present in ExG-based ASSC. Possibly, 
the ExG-based ASSC can detect subtle changes in neurological 
signals that carry sleepstage-pecific information, thus captur-
ing more stage transitions, as discussed in the previous section. 
Figure  4 illustrates multiple instances in ExG-based ASSC 
where probability around 0.5 is assigned to two stages; hence, 
a small change in the distribution causes a stage transition with 
high continuity.

4.4   |   Clinical Implications

Similar relative differences between RBD and OSA for (almost) 
all outcome measures were observed, including for overall and 
sleep stage-specific performance, (REM) ambiguity, and conti-
nuity. However, both ASSC models show distinct distribution 
differences, suggesting the absolute values observed for the 
outcome measures are specific to the targeted modality and to 
how the model is trained. Therefore, these models are not in-
terchangeable, and each serves a unique purpose. While the 
ExG-based sensor set-up will continue as standard for RBD 
diagnostics and clinical single-night monitoring, the HRVm-
based method provides a less obtrusive solution for prolonged 
in-home sleep monitoring. Since RBD often predates the clinical 
manifestation of α-synucleinopathy by several years, sometimes 
even decades (Berg et al. 2015; Postuma et al. 2019), early detec-
tion of RBD is important and could offer a window for potential 
future neuroprotective interventions. Early stage RBD indica-
tions may be subtle (Figorilli et al. 2020), can exhibit night-to-
night variability (Cygan et  al.  2010), and include known risk 
factors (e.g., occupational pesticide exposure, head injury, and 
ageing (Postuma et al. 2012)). Hence, the population at risk for 
RBD and α-synucleinopathy would be particularly suitable for 
in-home screening, prolonged monitoring and follow-up. When 
the ASSC models are employed, hypnodensity analyses can be 
used for further characterisation, including the use of ambigu-
ity and continuity measures as indicators for scoring reliability, 

FIGURE 5    |    ExG-based and HRVm-based hypnodensities of a 
66-year-old patient with RBD (same subject as illustrated in Figure 4) 
and an OSA subject with the same age. The hypnodensities indicate 
the probability distributions of wake (dark grey), N1 + N2 (light blue-
magenta), N3 (yellow), and REM (light red) sleep. In the RBD subject, 
REM probability typically failed to become the majority class in either 
ASSC, with probability assigned to multiple other stages concurrently 
(i.e., higher ambiguity). In contrast, REM classification in the OSA sub-
ject was less ambiguous. Furthermore, in general, RBD hypnodensities 
exhibited a more gradual transition of stage probabilities (i.e., higher 
continuity), whereas the OSA hypnodensities displayed abrupter chang-
es, in both ASSCs. For example, in the OSA subject, the N3 and REM 
probabilities reached the majority class faster, and spikes of wake prob-
ability were sharper, when compared to the RBD subject.
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derived diagnostic markers, and potentially to distinguish be-
tween pathological and natural sleep (transitions) (Feuerstein 
et  al.  2024). Moreover, while for both modalities automated 
sleep staging remains challenging, the reduced sleep staging 
performance, and in particular incorrect classification of REM 
sleep, in itself could potentially signal RBD.

4.5   |   Limitations

The RBD group can be considered a complicated patient popu-
lation, consisting mostly of elderly individuals with sleep disor-
der comorbidities. Hence, with the limited sample size, not all 
heterogeneity in the population may be captured. Furthermore, 
almost all patients with RBD have developed or will eventu-
ally develop α-synucleinopathy (Galbiati et  al.  2019; Iranzo 
et  al.  2014; Schenck et  al.  2013). To study the influence of α-
synucleinopathy on the ASSC agreement and the hypnodensity-
derived metrics, subgroup analyses for isolated and secondary 
RBD were performed (Tables  S7 and S8). However, no sig-
nificant differences were observed, and these analyses were 
heavily restricted by further reduced sample sizes. While this 
study showed hypnodensity-derived metrics can help character-
ise RBD sleep, further research should be conducted to study 
whether they contain diagnostic value. This should include 
larger RBD subgroups, manual (REM) sleep stage and RSWA 
scoring using the most recent guidelines (Cesari et  al.  2022), 
and control groups with patients with differential diagnoses, in-
cluding severe OSA, periodic limb movement disorder (PLMD), 
and other parasomnias (Iranzo and Santamaría 2005; Troester 
et al. 2023).

4.6   |   Conclusion

This study performed hypnogram and hypnodensity analysis on 
RBD using two automated sleep stage classification models that 
leveraged either neurological signals (“ExG”) or HRV and body 
movements. For both modalities, the discrete representation of 
sleep structure (i.e., the hypnogram) was inadequate in reveal-
ing complexities in RBD sleep staging when compared to OSA. 
In contrast, the underlying probability distribution (i.e., the hyp-
nodensity) indicated more ambiguous classification and less dis-
tinct stage transitions in RBD. As such, hypnodensity-derived 
measures have been shown to be informative for the character-
isation of (RBD) sleep and allow studying potential drivers of 
classification disagreement.
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