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Fig. 1: Illustration of the Tree of Diffusion Life (T DL) method for understanding data evolution in diffusion models. T DL samples the
generative space of GLIDE [24] using n = 1000 instances across 10 ImageNet classes as prompts. Noisy instance images (hi

t−1) are
extracted every 10th step (t in [0,100]) and are projected to an intermediate space (ĥi

t−1) via an ImageNet classifier [1] for semantically
meaningful distances. Noisy samples ĥi

t−1 are visualized using a novel evolutionary embedding method. The inner radial ring in the
radial layout (left) and the left vertical line in the rectilinear one (right) denote the initial generation steps, progressing outward or
towards the right to the final steps. Clusters are initially unclear and gradually emerge toward the end; for example, “planes” are initially
confused with “birds” or “cars” based on whether they are flying or on the ground, becoming evident only towards the last few steps.

Abstract— Diffusion models generate high-quality samples by corrupting data with Gaussian noise and iteratively reconstructing it with
deep learning, slowly transforming noisy images into refined outputs. Understanding this data evolution is important for interpretability
but is complex due to its high-dimensional evolutionary nature. While traditional dimensionality reduction methods like t-distributed
stochastic neighborhood embedding (t-SNE) aid in understanding high-dimensional spaces, they neglect evolutionary structure
preservation. Hence, we propose Tree of Diffusion Life (T DL), a method to understand data evolution in the generative process of
diffusion models. T DL samples a diffusion model’s generative space via instances with varying prompts and employs image encoders
to extract semantic meaning from these samples, projecting them to an intermediate space. It employs a novel evolutionary embedding
algorithm that explicitly encodes the iterations while preserving the high-dimensional relations, facilitating the visualization of data
evolution. This embedding leverages three metrics: a standard t-SNE loss to group semantically similar elements, a displacement
loss to group elements from the same iteration step, and an instance alignment loss to align elements of the same instance across
iterations. We present rectilinear and radial layouts to represent iterations, enabling comprehensive exploration. We assess various
feature extractors and highlight T DL’s potential with prominent diffusion models like GLIDE and Stable Diffusion with different prompt
sets. T DL simplifies understanding data evolution within diffusion models, offering valuable insights into their functioning.

Index Terms—Explainable AI, diffusion models, dimensionality reduction, evolutionary embedding, high dimensional, visual analytics

1 INTRODUCTION

Diffusion models have gained popularity across various applica-
tions [50], like generation, inverse problems, segmentation, and
anomaly detection. They effectively generate diverse and high-quality
samples by progressively corrupting data, usually with Gaussian noise,
and subsequently, reconstruct the corrupted data via a trainable iterative
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process using deep learning (DL). At each step, the same DL model,
such as Unet [37], takes an intermediate noisy image, iteration number,
and potentially a prompt as input and generates a less noisy image.
This iterative evolution goes from an initial state of pure noise to a
coherent image (see Fig. 2). Understanding this evolution of data is
relevant for comprehending distribution evolution and what the model
has learned [26]. It sheds light on the feature evolution and the decision-
making dynamics of dataset modes. Such knowledge is relevant for
refining model architectures and training strategies [6, 14, 51], con-
trolling the generation process [26, 49], and improving overall model
performance [33, 39]. This analysis could also help identify the biases
and attribute entanglements relevant for robust model development [51].
However, this evolutionary process’s iterative and high-dimensional
nature presents challenges in comprehending the underlying dynamics.

Prior works have explored understanding diffusion models. At-
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tribution maps explored concept prioritization of an instance over it-
erations [25]. Methods to understand the generation process within
diffusion models, including comparisons of a few instance evolutions,
have also been developed [17]. While some works delve deeper into
the underlying image space in the generative process [26], the focus
has been to extract a local latent structure around a sample. Insights
focused on the granularity of features rather than the actual features
evolving, which is our goal. Dimensionality reduction techniques like
t-distributed stochastic neighborhood embedding (t-SNE) or uniform
manifold approximation and projection (UMAP) [21] can visualize
such an evolution over a few instances [17]. However, extending them
to visualize the evolution of the entire dataset presents challenges. They
fail to preserve the iterative structure crucial for understanding the
diffusion process depicted in Fig. 2. Further, the stochastic positioning
of clusters in these methods complicates tracing this data evolution,
hindering analysis. Preserving the iterative structure is essential for
studying data evolution and branching patterns across the entire dataset.

Therefore, we present the Tree of Diffusion Life (T DL), a method to
support the understanding of the data evolution within the generative
process of diffusion models (see Fig. 1). To address the issue of holistic
understanding of the generative space, T DL samples this space via
several instances with different prompts. Semantic meaning is extracted
from this sampled evolutionary data using feature extractors or image
encoders, projecting them to an intermediate space. We propose a
novel evolutionary embedding algorithm to enable the understanding
of all sampled data at scale while preserving the iterative context;
hence facilitating the visualization of data evolution. The proposed
embedding enables this via three loss metrics to - 1) cluster semantically
similar elements (with the t-SNE loss), 2) place elements of the same
iteration together, and 3) align elements of an instance across iterations.
Rectilinear and radial layouts that explicitly represent these iterations
are introduced, allowing a comprehensive exploration of data evolution.
We investigate the strengths and limitations of image encoders that
extract semantic meaning from the sampled evolutionary data within
the proposed method. To demonstrate T DL’s practical relevance and
versatility, we apply it to two prominent diffusion models, GLIDE [24]
and StableDiffusion [36], utilizing different prompt sets for each model.
By exploring how data and their specific attributes evolve, we gain
valuable insights into the generation process of diffusion models. In
summary, our contributions are as follows:

• A method, T DL, to holistically understand data evolution within
diffusion models. It includes sampling the generative space, se-
mantically encoding these samples, and a novel means to visualize
the semantic evolution of these samples. The code is available at
https://github.com/vidyaprsd/treeofdiffusion.

• A novel evolutionary embedding algorithm with a rectilinear or
radial layout illustrating the evolution of instances.

• T DL’s evaluation through three cases with diverse prompt sets and
diffusion models, exploring its applicability in different scenarios.

2 BACKGROUND

Diffusion models: Diffusion models [12, 23, 40] aim to approximate
the true distribution u(h0) of training data h0. For this, training data
is gradually degraded, with Gaussian noise, resulting in a sequence of
spaces h1,h2, ...,hT per iteration. The amount of noise added varies
across iterations t and is a hyperparameter known as a noise scheduler.
This noising process, i.e., moving from the original data distribution
u(h0) to noise u(hT ), is called the forward process (see Fig. 2).

For generation, a model vθ , often a Unet [37], is trained to estimate
the noise needed to go from a noisy image instance hi

t to the final
denoised image hi

0. We refer to this smooth estimate of hi
0 at iteration t

as hi
t0 . A known level of noise based on the noise scheduler is added

back to hi
t0 to generate hi

t−1. The iterative process of estimating hi
t−1

from hi
t continues until t = 0 and is known as the reverse generative

process (see Fig. 2). Further details can be found in the original
papers [12, 23]. Although there have been advancements, for example,
skipping iteration steps to expedite sampling [52], the fundamental

Fig. 2: Theoretical representation of the diffusion process [41,44], where
the training data distribution u(hi

0) is represented as a 1D Gaussian.
During generation (left to right), an instance of the “dog” evolves from
noise hi

T to a coherent image hi
0, or a fuzzy estimation hi

t0 of the final
image at t to a clear one.

methodology of iterative reconstruction, where a less noisy image is
predicted at each step, remains the same. For our analysis, we extract
the noisy image hi

t and the estimation hi
t0 of the final denoised image at

each iteration t across instances i.

t-SNE: t-SNE [45] is a non-linear dimensionality reduction
method widely used for visualizing high-dimensional data. It aims to
preserve the neighborhoods between the high-dimensional data points
in a low-dimensional output space. For this, t-SNE translates distances
between the high-dimensional points as a symmetric joint probability
distribution P. Similarly, a joint probability distribution Q describes
the low-dimensional similarity. The goal is to achieve a mapping or an
embedding in the low dimensional space Q that faithfully represents P.
This is achieved by optimizing the positions of the low-dimensional
points via a cost C, which is the KL divergence between P and Q,

C = KL(P||Q) =
n

∑
i

n

∑
j, j ̸=i

pi j ln
pi j

qi j (1)

pi j is the similarity between two high-dimensional points hi and
h j and is based on their conditional probabilities pi| j and p j|i, shown
in Eq. (2). p j|i is the likelihood that h j is selected as the neighbor
of hi based on a Gaussian probability density function centered at hi

with variance σi. σi is defined based on the local density of hi in the
high-dimensional space and a defined perplexity parameter.

pi j =
pi| j + p j|i

2N
,where, p j|i =

exp(−||hi −h j||2/(2σ2
i ))

∑k ̸=i exp(−||hi −hk||2/(2σ2
i ))

(2)

For the low-dimensional space Q, whose point positions need to be
optimized, a student t-distribution with one degree of freedom is used
to compute the joint probability distribution. The similarity qi j between
two low-dimensional points li and l j is then given by,

qi j =
(1+ ||li − l j||2)−1

∑k ̸=m(1+ ||lk − lm||2)−1
(3)

Our paper employs the vanilla t-SNE [45] to identify the similarity
between high-dimensional images hi

t from the diffusion model. We
augment t-SNEs’ KL divergence cost function by introducing com-
ponents to group images within an iteration t and align images of an
instance i across iterations. While we use the basic t-SNE for simplicity
of implementation, advanced versions [31, 32] are compatible.

3 RELATED WORK

Interpreting Diffusion Models: Previous works have extensively ex-
plored the capabilities of diffusion models [50], but understanding the
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inner workings of these models is important for leveraging their full
potential and inspiring further research [4]. This inherent complexity
of this high-dimensional evolutionary process poses challenges for
exploration [46] and understanding [17], even for experts in the field.

Concerning the generation process, literature has focused on ex-
ploring the purpose of iterations, revealing that different stages in
the denoising steps correspond to varying granularity of visual con-
cepts [6, 25, 33, 39]. However, it is crucial to understand the evolution
of features or dataset modes to understand the root causes of failures
in these models and enable downstream development [19, 25]. On one
hand, the specific feature details of each iteration are an open question.
For this purpose, pixel-level attribution maps have been used to under-
stand which parts of the generated image the prompt keywords influence
the most. Tang et al. [42] do so via cross-attention keyword–pixel scores
in the core denoising network in diffusion models. Such attention maps
have been used for controlling output images [5, 10, 27, 43] and im-
proving sample quality. Saliency map methods like GradCAM [38]
were extended to diffusion models to study the model’s focus in each
iteration and how that evolves [25]. However, these existing approaches
primarily concentrate on individual samples, creating a gap in under-
standing the global evolutionary process, which is our focus.

Prior works have also gone beyond a single sample and explored
the local latent structures of the evolutionary diffusion process around
an instance [16, 26]. Park et al. [26] employed Riemannian geome-
try, a tool for analyzing the intrinsic geometry of smooth manifolds,
particularly relevant in understanding the structure of latent spaces in
diffusion models. While their focus was primarily on applying this
framework for image editing, they also shed light on the granularity
of features evolving over iterations rather than the features themselves
and the decision-making dynamics. This distinction highlights the
unique focus with T DL on the holistic view of the evolutionary space
and decision-making dynamics within diffusion models. Most of these
works discussed so far are learning-based methods that focus on apply-
ing insights to create improved models rather than generic means of
visualizing this evolutionary process to support understanding.

While visual analytics (VA) has provided a more generic means
to analyze and understand complex DL models, most works
focus, for example, on convolutional neural networks [30, 48],
generative adversarial networks [13], which do not contain the
iterative complexities of diffusion models. Lee et al. [17] proposed
DiffusionExplainer to support a fundamental understanding of the
generative process of a diffusion model at an instance level. It
offered insights into how the evolution pathways of an instance
deviate within an embedding space, which is obtained by projecting
intermediate noisy images via UMAP onto a 2D space. However, our
goal is to extend to a holistic understanding of this evolutionary process.

Visualizing high-dimensional evolutionary data: Visualizing
the high-dimensional evolutionary data is crucial to understanding the
complex data evolution process within diffusion models. Techniques
like dimensionality reduction with tSNE or UMAP offer value in
visualizing data evolution over a few instances [17]. Such methods
have also been used in visualizing data evolution over several instances
in strategic games [11]; however, these methods fall short when applied
to diffusion model data. They struggle to preserve the iterative structure
inherent in diffusion models (see Fig. 2) due to their stochastic nature,
which is highlighted when visualizing large-scale samples. On the
other hand, neural network features across layers [35] or optimization
iterations [18] have been visualized with one projection per layer,
making it challenging to study evolution. Parallel coordinates are
a popular means to visualize evolutionary or temporal data in other
applications [2, 8]; however, projecting high-dimensional data from
diffusion models onto a single dimension presents challenges. Recent
methods incorporating soft Gaussian constraints to position points
in an iteration together [20] offer a potential solution but do not
align images across iterations. For this purpose of alignment, other
works have proposed vertical distances between pairs of points that
connect together [3, 28], which is useful in our case. However, in the
evolutionary data from diffusion models, early iterations hold less

relevance than later ones in the generation process. Hence, it might not
be ideal to allocate the same vertical visual space to all iterations.

In our evolutionary embedding, we aim to combine soft constraints
for iteration displacement and instance alignment and extend it to
the context of diffusion models. We further extend these concepts to
a layout that optimizes space usage across generative iterations and
facilitates the comprehensive study of diffusion model evolution.

4 TREE OF DIFFUSION LIFE

We introduce a method Tree of Diffusion Life (T DL) to holistically
study data evolution in the generation process of diffusion models.
T DL involves sampling the generative space, semantically encoding
these samples via image encoders, and a novel evolutionary embedding
to visualize the data evolution. In this section, we detail the goals of
our approach and then describe T DL.

The theoretical representation of data evolution, extensively illus-
trated in literature [41, 44], is shown in Fig. 2. During generation,
the data distribution u(ht), which is represented as a 1D Gaussian,
evolves from a single mode, indicating pure noise, to a complex distri-
bution containing multiple modes. This visualization not only enhances
interpretability but also supports understanding the decision-making
dynamics of dataset modes across iterations, i.e., branching, as well as
feature evolution. However, projecting high-dimensional evolutionary
data onto a low-dimensional space is challenging. Prior works either
visualize localized evolution dynamics [17, 26] or explore this phe-
nomenon on low-dimensional toy data [14]. We aim to represent the
data evolution in Fig. 2 using real high-dimensional data for a practical
understanding of the generation process in diffusion models. To achieve
this, our method has the following goals:

• G1: Semantically similar elements in the high-dimensional space
need to be placed together in the low-dimensional projection.

• G2: Elements belonging to the same iteration must be placed
together, enabling the study and comparison of how different data
modes evolve. For example, in Fig. 2, the topmost mode, i.e., the
shark class, emerges sooner than the others.

• G3: Pathways connecting elements of a specific instance across
iterations should intersect minimally. This requirement ensures
we only observe actual branching patterns and avoid misalignment
across iterations due to the method’s stochastic nature.

We propose T DL to achieve these goals and holistically understand
the data evolution process in diffusion models. T DL’s components are
illustrated in Fig. 1. We first sample the diffusion models’ generative
space via instances with different prompts, extracting all images across
instances i and iterations t. These include the evolving noisy images
hi

t−1 and the smooth estimate hi
t0 of the final image at iteration t. Since

these images are high-dimensional, we project them to an intermediate
space via an image encoder f for semantically meaningful distances
(G1), i.e., ĥi

t−1 = f (hi
t−1) and ĥi

t0 = f (hi
t0). We explore classifiers and

foundational image encoding models for this step. The intermediate
space is then analyzed with a proposed evolutionary embedding algo-
rithm that explicitly encodes iterations, supporting the exploration of
data evolution and, in turn, the generative process. Our evolutionary
embedding method projects the semantically encoded elements (ĥi

t−1
or ĥi

t0 ) to low-dimensional ones (lit−1 or lit0 ). We propose radial and
rectilinear layouts where a ring or a vertical line represents an iteration,
respectively, enabling analysis of the evolutionary process.

5 EVOLUTIONARY EMBEDDING

The core of T DL is an evolutionary embedding algorithm that aims
to preserve the iterative context while enabling visualization of data
evolution, as shown in Fig. 3. We propose radial and rectilinear layouts
that explicitly represent iterations to facilitate this analysis. The evolu-
tionary embedding incorporates three cost metrics, each tied to one of
the goals described earlier, namely,

• Standard t-SNE loss (G1): to cluster semantically similar el-
ements. It is defined as the KL divergence between the high



Fig. 3: Evolutionary embedding process for the (a) rectilinear and (b)
radial layout. Elements of iterations t are attracted to dark, low-cost areas
based on a Gaussian at a displacement value (x̄t or r̄t ) per t. Elements
of an instance across iterations are aligned based on their y or θ .

and low-dimensional spaces, preserving the neighborhood of the
high-dimensional space in the low-dimensional embedding [45].

• Displacement loss (G2): to explicitly place elements of the same
iteration together, we impose a specific position or offset per
iteration, i.e., radius or horizontal position. This metric uses a
Gaussian centered around the corresponding iteration offset in the
low-dimensional space.

• Alignment loss (G3): to align elements of the same instance
across iterations, this loss is measured as the alignment offset
in vertical position or radial distance among sequential pairs of
elements across iterations.

The displacement and alignment losses are additional constraints on the
low-dimensional embedding. We propose two layouts: a rectilinear one
in Cartesian and a radial one in polar coordinates. While conceptually
similar, the losses are modified to handle the different characteristics
and coordinate systems of each layout.

Rectilinear Layout: The rectilinear layout models each itera-
tion as a vertical line (see Fig. 1 and Fig. 3). In this layout, for each
iteration t, the standard t-SNE loss (G1) is computed to preserve
semantic neighborhoods from the high-dimensional space to the
low-dimensional space. Each iteration t is independent from other
iterations. Specifically, Eq. (1) is modified as follows to represent the
semantic cost function component, Cs,

Cs = ∑
t

KL(Pt ||Qt) = ∑
t

∑
i

∑
j, j ̸=i

pi j
t ln

pi j
t

qi j
t

where, p j|i
t =

exp
(
−||ĥi

t − ĥ j
t ||2/(2σ2

i )
)

∑k ̸=i exp
(
−||ĥi

t − ĥk
t ||2/(2σ2

i )
)

qi j
t =

(1+ ||lit − l j
t ||2)−1

∑k ̸=m(1+ ||lkt − lmt ||2)−1

(4)

The low-dimensional elements lit , with coordinates (xi
t ,y

i
t), are orga-

nized per iteration t with the Cartesian displacement loss Cc
d for G2. Cc

d
is implemented as a Gaussian centered around an x-coordinate offset xt
per iteration within the low-dimensional space, as follows:

Cc
d = ∑

t
∑

i
Cc

d(i, t), where, Cc
d(i, t) =− 1

σ
√

2π
e
−
(xi

t − xt)
2

2σ2 (5)

The spread or thickness of each iteration is determined by the pa-
rameter σ , the Gaussian’s standard deviation. This Gaussian attracts
elements at iteration t to xt , hence explicitly encoding iterations (see
Fig. 3). In practice, this σ starts with a user-defined larger value to
allow the points to move freely and then is reduced across optimization
iterations to move points closer to xt . We start with a σ= 20 and end
with σ= 10 for all our experiments. Additionally, vertical lines are

visually positioned with a certain buffer spacing between them, deter-
mined based on user requirements. We used a spacing s of 20 in all
cases1, implying that xt = s∗ (T − t). The noisy iteration with larger t
is positioned on the left and has the smallest xt .

Lastly, the Cartesian alignment loss Cc
a (G3), aligns elements of each

instance i across iterations. This loss is defined as the vertical distance
between sequential pairs of elements across iterations t (see Eq. (6)).
Larger t values correspond to early generation steps.

Cc
a = ∑

i

T

∑
t=1

Cc
a(i, t), where, Cc

a(i, t) =
√
(yi

t − yi
t−1)

2 (6)

The final loss Cc is the weighted sum of the semantic, displacement,
and alignment losses, with respective weights α , β , and γ . For the
rectilinear layout, empirical findings suggest setting α = 1,β = 5,γ =
0.2, since these values consistently yield desired results1.

Cc = α ∗Cs +β ∗Cc
d + γ ∗Cc

a (7)

We use a similar optimization method as proposed by van der
Maaten [45]. The combined cost Cc is minimized via gradient de-
scent. The gradients are computed as follows,

∂C
∂xi

t
= α ∗ ∂Cs

∂xi
t
+β ∗

∂Cc
d

∂xi
t

∂Cs

∂xi
t
= 4∑

j
(pi j

t −qi j
t )(x

i
t − x j

t )X
i j
t

∂Cc
d

∂xi
t
=

(xi
t − xt)

2σ2 ∗Cc
d(i, t)

∂C
∂yi

t
= α ∗ ∂Cs

∂yi
t
+ γ ∗ ∂Cc

a

∂yi
t

∂Cs

∂yi
t
= 4∑

j
(pi j

t −qi j
t )(y

i
t − y j

t )Y
i j

t

∂Cc
a

∂yi
t
=

(yi
t − yi

t+1)

Cc
a(i, t)

(8)

Where, X i j
t = (1 + (xi

t − x j
t )

2)−1, and, Y i j
t = (1 + (yi

t − y j
t )

2)−1.
While Cs in Eq. (4) illustrates the high-dimensional elements hi

t , these
elements can also be other high-dimensional elements such as ĥi

t .
∂C/∂xi

t and ∂C/∂yi
t are the resultant force exerted on the data point

lit by all other elements. We simultaneously optimize the three loss
functions. The resultant force of the three costs leads to points moving
within the vertical band corresponding to iteration t. We initialize lit
in a buffer region around the corresponding xt for faster optimization
results. The expected result is that points are semantically clustered
around their corresponding x-offsets xt per iteration while maintaining
the instance alignment across iterations (see Fig. 1).

Radial layout: The rectilinear layout fulfills our goals by en-
hancing the visualization of branching patterns and resembling the
theoretical representation of expected behavior in Fig. 2. However,
it utilizes space sub-optimally since equal space is allocated to all
iterations despite the early-generation steps having less relevant
patterns than later ones. This results in vacant unused spaces in the
initial iterations. Hence, we propose a radial layout consisting of
concentric rings (see Fig. 1 and Fig. 3). Each iteration is represented as
a ring, the innermost being the early-generation steps, and the outer
rings are later iterations. A key difference between the rectilinear
and radial layout is the transformation of the cost function to use
the perspective of polar coordinates. In a radial layout, early noisy
iterations occupy less space at the center compared to later iterations in
the outer rings, addressing sub-optimal space utilization.

The low-dimensional elements lit , in Cartesian coordinates (xi
t , yi

t ),
can be represented in polar coordinates (ri

t , θ i
t ). Conceptually, the same

three losses Cs, Cc
d, and Cc

a are utilized, but the form is adapted to
the radial layout. For the sake of simplicity and to preserve correct
gradients, the semantic loss, Cs, and its gradients are still computed
in Cartesian space and then converted to polar coordinates. In other
words, the semantic loss is still based on the Euclidean distance.

1Exploration of these hyper parameters are in the supplementary materials.



The displacement loss (G2) was rewritten for the radial layout Cp
d ,

as it needs to organize elements of an iteration within concentric rings.
This implies a Gaussian centered around a radius-offset rt per iteration
in the low-dimensional space as defined in Eq. (9). The Gaussian en-
codes iterations by attracting elements at iteration t toward the ring rt
(see Fig. 3). The innermost ring is represented with the offset rt=T = 0,
forming a circle. Subsequent rings have user-defined offsets rt!=T > 0,
determining their spacing based on user preference. In our experi-
ments1, this spacing was set to 20, i.e., rt = 20∗ (T − t).

Cp
d = ∑

t
∑

i
Cp

d(i, t), where, Cp
d(i, t) =− 1

σ
√

2π
e
−
(ri

t − rt)
2

2σ2 (9)

Lastly, the alignment loss (G3) in the radial layout Cp
a aligns ele-

ments of each instance i across iterations by minimizing the cosine
distance between the angles θ i

t of the sequential pairs of corresponding
elements of an instance across iterations below. By using the absolute
value of the cosine similarity, we create an unstable equilibrium in the
cost function when the angular difference approaches 180◦ degrees.
This unstable point facilitates faster optimization by preventing the
algorithm from getting stuck in the poor local minima of two related
points being located at diagonally opposite ends of a ring.

Cp
a = ∑

i

T

∑
t=1

1−
∣∣∣simi

t

∣∣∣ ,where,simi
t = cos

(
θ i

t −θ i
t−1

2

)
(10)

The final loss Cp is the weighted sum of Cs, Cp
d , and Cp

a with re-
spective weights α , β , and γ . Empirical findings suggested setting
α = 1,β = 5,γ = 0.05 for the radial layout consistently yields desired
results1. The optimization process follows a similar approach to the
one described earlier. However, in this case, the resultant force of the
three cost elements leads to points moving along the respective iteration
rings. The gradient updates in polar form are defined as follows:

∂Cp
d

∂ ri
t
=

(ri
t − rt)

2σ2 ∗Cp
d(i, t)

∂Cp
a

∂θ i
t
=


− 1

2 sin
(

θ i
t −θ i

t−1
2

)
if simi

t < 0

undefined if simi
t = 0

1
2 sin

(
θ i

t −θ i
t−1

2

)
if simi

t > 0

(11)

The gradient of Cp
a with respect to θ i

t when simi
t = 0 is undefined.

This is the unstable equilibrium point, where the point can move in
either direction along the ring to reach a similar point that is diagonally
opposite. While it is unlikely for simi

t = 0 in practice, one of the other
two gradient options is randomly chosen during optimization.

We described the evolutionary embedding method that generates
the rectilinear and radial layout, meeting our goals. Next, we present
visualization aspects of evolutionary embeddings within T DL.

5.1 Visualization
The evolutionary embedding is visualized in either radial or rectilinear
layouts. Iterations are represented as either concentric rings or vertical
lines, highlighting progression from noisy (innermost ring or left-most
vertical line) to clearer representations (outermost ring or right-most
vertical line). When visualizing these embeddings to enable analy-
sis, several considerations arise. These mainly include 1) linking the
embedding and the high-dimensional diffusion-image space, 2) sup-
porting analysis of the progression or evolution of instances through
the generation process, and 3) characterizing images through prompt
keyword-image links to improve comprehension of high-dimensional
evolutionary data. In this section, we present a possible means to
facilitate this analysis as a proof of concept2.

2See supplementary figures for a visual representation of this method.

To comprehend the high-dimensional image space via the embed-
ding, we display images of specific iterations (hi

t−1 or hi
t0 ) at regular

intervals along the circumference of the largest ring or along the length
of the right-most vertical line, spaced at intervals of θ degrees or y
units, respectively (refer to Fig. 1). The high-dimensional images hi

t−1
or hi

t0 of selected embedding elements are dynamically displayed for
further linked analysis. To further explore the evolution and hierarchy
of data, keywords or attributes within a prompt are utilized to color the
low-dimensional embedding points. For example, a prompt “a woman
with black hair” can be colored by the keyword woman or black hair,
analyzing the effect of each keyword on the evolution process. To
enhance the visualization of instance evolution, pathways connecting
images of the same instance across iterations are traced with smooth
curves. Given the potential for visual clutter arising from showing all
pathways, we visualize only the evolution of selected elements lit−1 of
a specific instance i across iterations t (see Fig. 7). These pathways
are drawn as smooth cardinal splines using respective elements lit of
an instance i as control points. The embedding points are clustered
per iteration and keyword using DBSCAN [9] to achieve a cleaner
visualization of pathways. Pathways and points within each cluster
are interpolated towards the cluster centroid based on a controllable
interpolation factor. While there could be better approaches to achieve
this, we leave it to future work. Simple data filters on the iteration step
t, path lengths, and prompt keywords are provided to facilitate analysis.
Users can interactively control keyword-color associations and path-
way interpolation factors. It’s important to note that our contribution
primarily focuses on dimensionality reduction and layout generation
rather than the interactive front-end aspect. We leave it to future work
to build a more comprehensive front-end.

6 EXPERIMENTS WITH TDL COMPONENTS

Within T DL, several components exist, including images to be encoded,
image encoders, the two layouts, and their loss metrics. Understanding
how these components interact and their effects on evolutionary em-
bedding within T DL is crucial. In the following sections, we present
our setup utilized for these experiments. We then evaluate and compare
the two proposed layouts with the baseline vanilla t-SNE. Finally, we
explore various image encoders and analyze the two types of diffusion
images we extract: smooth and noisy representations. By doing so, we
aim to gain insights into how each component influences the evolution-
ary embedding process within T DL and aids in tuning the embedding
quality for various datasets and applications.

6.1 Experimental Setup
We use GLIDE [24], a popular text-to-image diffusion model, for our
experiments. We generate a set of 1000 samples from 10 prompts,
namely tiger, bird, car, f ruit, building, dog, shark, ball, plane, table.
Randomly selected ImageNet classes were used as prompts, with 100
samples from each prompt. GLIDE’s base model was used to generate
samples in 100 iterations. For the evolutionary embedding, 11 equally
spaced iterations t ∈ 99,90,80, ..,10,0 were used.

We examine the impact of the diffusion images (ht−1, ht0 ) encoded
with different image encoders f to generate intermediate spaces of ĥt−1
and ĥt0 respectively. The evolutionary embedding is applied to this
intermediate space. The encoders explored include a robust ResNet50
ImageNet classifier [1] and the image encoder of CLIP [34]. CLIP
is a foundational model that learns visual concepts from natural lan-
guage supervision. Additionally, we apply the evolutionary embedding
directly on the raw diffusion images (ht−1 and ht0 ) for comparison.

6.2 Evaluation
We explore the utility of each loss metric of Eq. (7) in Fig. 4 and
compare our evolutionary embedding layouts with vanilla t-SNE [45].

For this evaluation, we project all noisy representations hi
t−1 to an

intermediate semantically meaningful space of ĥi
t−1 with a robust Im-

ageNet classifier [1]. This intermediate space is analyzed with our
evolutionary embedding method and vanilla t-SNE, each optimized for
2000 iterations. The vanilla t-SNE, obtained by projecting all images



Fig. 4: Single vanilla t-SNE [45] embedding on all ĥt−1 extracted from
the GLIDE ImageNet use case with a classifier [1]. Points are colored
by (a) iteration t and (b) prompt. Radial layout without (d) and with (e)
the instance alignment loss. Pathways of “tables”, “sharks”, “fruits” are
shown on the vanilla t-SNE (c) and radial layout (f).

on a single 2D embedding, shows some form of evolution seen in the
continuity of points in Fig. 4a. However, as clusters become more
distinct, i.e., the yellow points of Fig. 4a, they do not have continuity
with previous iterations t. The non-alignment of iterations t and the
stochastic placement of clusters make it challenging to trace data evolu-
tion. Our proposed radial layout in Fig. 4e, which explicitly encodes
iterations, shows per cluster evolution patterns more distinctly. For
example, we see that the “shark” and “fruit” instances evolve early
on compared to other object types in Fig. 4f. This is not immediately
apparent in the vanilla t-SNE embedding in Fig. 4c; both Fig. 4a and b
need to be analyzed together to come to this conclusion. The stochastic
placement of clusters in the radial layout of Fig. 4d (or Cc

a for the recti-
linear layout) is minimized with the proposed instance alignment loss
Cp

a , while maintaining cluster relations (see Fig. 4e).
The evolutionary embedding aims to introduce aligning constraints

for visual clarity of the diffusion process while preserving the high-
dimensional relations within an iteration. Hence, we compare the
performance of our method against the vanilla 2D t-SNE [45] in Fig. 4
to ensure preservation of the high-dimensional neighborhoods. For
this, we utilize projection quality metrics trustworthiness (Qtrust) and
continuity (Qcont) of instances [15] within an iteration t. These metrics
take values in [0,1]; the higher, the better. Qt

trust checks whether the
k nearest neighbor of an element in the embedding is also a neigh-
bor in the original high-dimensional space within an iteration, where
Qt

trust = 1−Ak ∑i ∑x j
t ∈Uk(xi

t )
r(xi

t ,x
j
t )− k. Here, r(xi

t ,x
j
t ) signifies the

rank of a sample xt
j concerning its distance to xi

t in the high-dimensional
space. Uk(xi

t) is the set of data elements that are neighbors of xi
t in the

embedding but not in the high-dimensional space. A(k) is a scaling
factor. Similarly, Qt

cont checks whether the k nearest neighbor of an
element in the high-dimensional space is preserved in the embedding,
where Qt

cont = 1−Ak ∑i ∑x j
t ∈Vk(xi

t )
r̂(xi

t ,x
j
t )− k. Here, Vk(xi

t) are those

elements that are neighbors of xi
t in the high-dimensional but not the

embedding space. We utilize k = 7 inline with previous works [15, 22].
Figure 5 illustrates Qt

trust and Qt
cont across various layouts. Notably,

these metrics values for the proposed evolutionary embeddings remain
comparable to vanilla t-SNE. Further, there is only a minor deterio-
ration in Qt

trust and Qt
quant when the alignment losses (Cc

a and Cp
a ) are

introduced for the rectilinear and radial layouts in Fig. 5 compared
to the metric without the alignment. This indicates that evolutionary
embedding preserves the high-dimensional structure like vanilla t-SNE
while providing benefits in understanding data evolution.

Additionally, the evolutionary embedding method significantly out-
performs vanilla t-SNE in terms of speed for this experiment. This is
primarily because we divide t-SNE into smaller segments per iteration

Fig. 5: Qt
trust (left) and Qt

cont (right) of vanilla t-SNE, and the proposed
radial (radial) and rectilinear (rect) layouts with (all) and without (noalign)
the instance alignment metric across iterations t. Embeddings are ob-
tained on ĥi

t−1. t = 100 is noise. α = 1.

and combine them with simple alignment losses. The preprocessing
step with PCA takes ≈ 1 minute for our method in comparison to ≈ 6
minutes for the vanilla t-SNE. Further, our method takes < 1 second,
while vanilla t-SNE takes ≈ 9 seconds per iteration. This substantial re-
duction in computational time combined with the visual clarity of data
evolution highlights the efficiency and effectiveness of our approach.

The quality metrics between the proposed radial layout compared to
the rectilinear one are comparable, indicated by similar trends of these
layouts in Fig. 5. The main decline in quality metrics of the proposed
radial method comes in the largest t value early in the generation pro-
cess. Since these represent almost pure noise, they are less significant
than the later generation steps. We support both layouts for analysis;
the rectilinear is closer to the theoretical representation, while the radial
one makes better use of the visual space.

6.3 Image Encoders & Images Encoded

In this section, we show the influence that the semantic encoders have
on T DL’s results. Figure 6 highlights the use of various image encoders
f on the two types of diffusion images, the noisy ĥt−1 and smooth ĥt0 .
The raw image encodings (see Fig. 6a and Fig. 6d) are ineffective in
capturing semantic clusters since they capture only local-pixel-level
differences rather than higher-level semantic changes. However, they
capture groups, like sharks and f ruits that are significantly different
from the others, evident from the red and blue clusters visible from the
second or third inner-most concentric circle in Fig. 6a and Fig. 6d.

On the other hand, task-specific classifiers or feature detectors like
the robust ImageNet classifier [1] lead to a more accurate representation
of semantic groups, especially on the noisy elements ĥt−1 (see Fig. 6c).
The robust nature of the model is also reflected in the groups in early
generation iterations (inner rings) compared to CLIP encoded features
in Fig. 6b. Both encoders capture the smooth representation ĥt0 well

Fig. 6: Applying evolutionary embedding on GLIDE images with various
encoding strategies. (a) Raw noisy images ht−1 and (d) raw smooth
images ht0 undergo evolutionary embedding. Noisy images ht−1 are
encoded with (b) CLIP [34] image encoder, and (c) a robust ImageNet
classifier [1] before the embedding creation. Similarly, smooth images
ht0 are encoded with (e) a CLIP and (f) a robust ImageNet classifier.



Fig. 7: Pathways of instances ĥi
t−1 from GLIDE [24] encoded with an Ima-

geNet classifier [1] traced in the evolutionary embeddings: (a) Pathways
shorter than the 5th percentile in radial layout, primarily highlighting the
shark and f ruit instances. (b) Evolution of plane class and its clusters
in the rectilinear layout, with images resembling birds or cars at noisy
t=40 stages. Underwater (shark) and land images evolving before the
subdivision within land images, i.e., tigers and dogs in the (c) radial and
(d) rectilinear layouts.

(see Fig. 6e and Fig. 6f). While task-specific classifiers lead to more
granular features captured in the intermediate space, foundational mod-
els like CLIP provide a generic representation across tasks. Ultimately,
the choice of semantic encoder impacts the quality and granularity of
semantic information captured, which is crucial for the effectiveness of
T DL in various applications.

7 USE CASES

In the previous section, we evaluated and explored the various com-
ponents of T DL. Here, we illustrate the potential of T DL for analysis
of high-level object types, followed by finer attributes and prompt
hierarchies to gain deeper insights into the data evolution process.
Specifically, we explore three prompt sets; the first relates to high-level
object types or ImageNet classes, the next is finer human facial fea-
tures, and the last one relates to different styles of cat images. We use
GLIDE [24] and Stable Diffusion [36] for the first and last two cases,
respectively, since they are widely explored and popular text-to-image
diffusion models that are available in the open-source. While these two
models represent two large classes of underlying diffusion model types,
we primarily focus on text-to-image models for our analysis.

7.1 Exploring ImageNet objects

In this section, we study the evolution of higher-level object types that
are relatively distinct from one another. Our aim is to explore when
these modes come into existence in the generative process. Specifically,
the evolution of 10 ImageNet classes previously described in Section 6.1
are explored with GLIDE [24]. We start by analyzing the evolutionary
embeddings of the noisy instances encoded with the robust classifier [1]
in Fig. 7. The lengths of these paths traced provide insight; the shorter
paths indicate distinct modes, and the longer paths indicate branching
and zig-zag patterns. When exploring shortest pathways, we note that
these mainly arise from the shark and f ruit classes (see the red and
blue highlighted points in Fig. 7a). This finding is also consistent with
the distinct clusters of these two classes that emerge in the inner-most
circles of in Fig. 6a and 6b, owing to their distinct colors.

Since the plane instances are grouped into two clusters in the last
iteration of Fig. 7c, we explore them. These clusters mainly arise due to
the fact that the noisy plane instances hi

t are divided based on whether
they are in the air, resembling birds in Fig. 7q or are on land, resembling

Fig. 8: Evolution of human facial attributes with Stable Diffusion. Smooth
representations ĥt0 from CLIP summarized with evolutionary embedding
and color-encoded to depict gender (a), hair color (b) in the radial layout,
and age+gender in the radial (c.1) and rectilinear layout (c.2). Sample
images at iteration t are highlighted with circles. Primary separation is by
gender followed by age, grey hair, and finally, blonde and brown hair.

cars in Fig. 7p. While the class distinction becomes evident towards
the end of the generation process, the noisy images hi

t=40 are visually
confusing. This pattern is also seen in the CLIP-encoded features in
Fig. 6b. Similarly, we observe a distinction between noisy instances hi

t
with grassy (green) and water (deep blue) backgrounds in Fig. 7. The
grass and water instances separate out first (Fig. 7r vs. Fig. 7s) already
in the second inner ring, followed by sub-clusters within the grassy
images. In this case, the grassy images consisted of dogs and tigers on
green grass, and the water images were those of sharks.

When exploring the smooth instance representations ĥi
t0 in Fig. 6e

and 6f, the diffusion model shows an understanding of vague object
structures early in the generation process. Although some classes like
plane and car, or dog, tiger, and bird remain intertwined in Fig. 6f,
most object modes emerge earlier in the generation process, primarily
within the inner rings. This indicates that the model generates most
global structures within the first few iterations, a finding supported by
literature [6,26,33,39]. Next, we dive deeper into the evolution of finer
features to enhance our understanding of the generation process.

7.2 Exploring human facial features

In this section, our aim is to investigate the hierarchical evolution of fea-
tures, identifying when they emerge during the evolutionary generative
process with Stable Diffusion [36]. We take an example of human fa-
cial features for this purpose, as this has been explored in literature [7].
While these works also aimed to reveal such a structure [7], we aim to
provide a more generic approach that is also more interpretable. We
additionally aim to elucidate any entanglement between data attributes
relevant for advancing diffusion models [51]. Our prompt is defined by
the regular expression: “a photo of a [young | old] [man | woman]; with
[brown | grey | blonde] hair; with [brown | blue] eyes; [wearing a neck-
lace]?”. Images are generated in 40 iterations. We further sub-sample
11 iterations within this for the evolutionary embedding. Here, we
explore the attributes age, gender, haircolor, eyecolor, and whether
they were wearing a necklace. This yielded a total of 48 prompts
representing all possible keyword combinations defined above. 50 in-
stances are sampled from each prompt for exploration. The smooth
representations ĥt0 derived from CLIP [34] are summarized through
the proposed evolutionary embedding method in Fig. 8. To explore
the order in which facial features emerge, we color-encode different
attributes, including age, gender, and hair color, in a sequential manner.



Fig. 9: Effect of prompt hierarchy on data evolution in Stable Diffusion.
The radial evolutionary embedding is based on smooth representations
ĥi

t0 of instances, with points color-encoded. Images generated with
different prompt hierarchies, such as “a cat” (a), “realistic photo of a
cat” (b), and “realistic photo of a domestic cat” (c), are clustered in the
embedding. However, images with the prompt “realistic photo of a wild
cat” initially mix with others (e) before segregating into separate clusters
(d). “Painting”s of cats (f, g) encompass varying painting styles.

When data points are colored by age, the layout highlights the
model’s capability in distinguishing between old and young individuals,
evident as early as the second-most inner ring in Fig. 8a. Notably, the
smooth images ht0 depicted in the figure already exhibit discernible
facial and hair outlines, with longer hair possibly indicating female
subjects. Next, when points are color-encoded by both age and gender,
specifically for older individuals, we observe that the model is confused
at the second-most inner ring, where age was already apparent (see
Fig. 8c.1). This mix-up is also evident in the crossing of pathways at
the second generation step in Fig. 8c.1 and 8c.2. Examining the smooth
images highlights at this iteration the source of this confusion: both old
men and old women exhibit fuzzy, white short hair. As the generation
progresses, this distinction becomes clear, as shown in images on the
right side of Fig. 8c.2.

Lastly, when points are color-encoded by hair color, interesting
insights emerge in Fig. 8b. We observed instances of individuals with
grey hair in orange primarily spread across the left half of the radial
layout. While this group primarily included older individuals, we noted
the presence of young women with grey hair. Some of these women
were middle-aged rather than young, hinting at a potential mix-up in age
attributions. This entanglement between age and hair color is further
highlighted by the observation that many older individuals demonstrate
whitish hair regardless of the prompt, as seen in the left half of Fig. 8b.
Such entanglements are crucial to detect, as they may impact model
performance. Our visualization aids in identifying and addressing such
issues, facilitating the refinement of diffusion models [51]. On the other
hand, while exploring hair colors of young men, we observed that grey
hair separates out first, followed by blonde and brown hair much later
in the generation process, particularly after the eighth ring on the right
half of Fig. 8b. While foundational models like CLIP were sufficient for
detecting larger features like hair color, they were insufficient for very
fine details like the eye color in our case. To explore these finer features,
task-specific classifiers or attribute detectors must be employed.

We showed how T DL helped us identify hierarchies in features or
attributes within a prompt. For example, in this case, gender was the
first feature to be distinguished based on hair outlines, followed by age,
and then hair colors. T DL also supported the detection of entangled
attributes (age and hair color in this case). It is essential to recognize
that these insights can vary based on each trained diffusion model,
reflecting its unique learnings and biases. Our method is meant to
be a generic means to support the understanding of this evolutionary
process.

Fig. 10: Data evolution of paintings of cats with a hierarchical structure
generated with Stable Diffusion. The radial evolutionary embedding is
based on smooth elements ĥi

t0 , with points color-encoded by their prompt.
Instances where the painting style (monet) is not specified, are positioned
together in the bottom-right of the radial layout.

7.3 Exploring image styles

In this section, we simulate a realistic usage of prompt engineering for
image generation by designing prompt hierarchies, going from generic
prompts to more specific ones, and examining their impact on the evo-
lutionary generative process in Stable Diffusion [36]. Specifically, we
explore cat image styles, which are similar to cases that have also been
explored in literature [17]. The prompts are defined by the expression
“A [realistic photo of a | painting of a]? [domestic | wild]? cat [with
a yellow collar | with an orange collar]? [in the style of monet | in
the style of van gogh]?”. We sampled 50 instances from each of the
39 combinations above. By organizing the prompts in a hierarchical
structure, we start with general prompts and gradually introduce more
specific ones. This approach allows for a more controlled exploration
of the styles of cat images, mimicking the exploration of options dur-
ing the image generation process. Similar to the previous case, we
use CLIP [34] to encode the smooth representations ht0 of data. This
encoding generates an intermediate space of ĥt0 , summarized through
the proposed evolutionary embedding method. Our initial exploration
centers around analyzing the hierarchy in the specificity of prompts,
aiming to understand how certain prompts encompass a larger set of
instances compared to others.

Figure 9 reveals an interesting pattern. Instances prompted with
“a cat” exhibit a similar evolution to those prompted with “a realistic
photo of a cat” and “a realistic photo of a domestic cat” (see Fig. 9a,
Fig. 9b, and Fig. 9c). The corresponding images on the right side of
Fig. 9 indicate that the prompt “a cat” primarily generates real images
of domestic cats. In contrast, instances prompted with “a realistic
photo of a wild cat” evolve along fully different pathways in Fig. 9d.
While there is some initial mixing between these two sets in cluster 9e
in early iterations until the fifth ring, they subsequently separate into
different directions. It is necessary to analyze this encompassing aspect
of prompts to identify the distribution of images they generate. In this
case of “a cat”, our findings suggest a potential bias towards domestic
cats, which may have implications depending on the specific use case.

On the other hand, paintings of cats evolve differently (see Fig. 9g
and f) from the photos, as expected. For example, the generic prompt
“a painting of a domestic cat” in purple encompasses life-like paintings
related to the style of Monet in cluster 9g, as well as paintings char-
acterized by bold colors related to the style of van Gogh in cluster 9f.
Interestingly, paintings of cats display a wider variety compared to
photos, prompting further exploration of prompt hierarchies within
this category (Fig. 10). Generic prompts, such as “a painting of a
cat” and “a painting of a domestic cat”, evolve similarly into those
with vibrant colors (see bottom-right of the radial layout in Fig. 10).
This finding indicates that the model, by default, generates these more
colorful images unless a specific style is specified. Conversely, when
explicitly specifying a style, such as monet, leads to the emergence of
softer-toned images in the top-right of the radial layout of Fig. 10.

In summary, our exploration into prompt hierarchies sheds light on



the data evolution within diffusion models. The findings highlight the
significance of prompt specificity in influencing the generated image
distribution, with more generic prompts potentially leading to (poten-
tially) unintended biased outcomes, while specific prompts yield more
specific results that are more desirable.

8 DISCUSSIONS

Evolutionary Embedding: In our implementation of the evolutionary
embedding, we utilized the vanilla t-SNE [45] for a proof of concept.
However, any dimensionality reduction method that groups semanti-
cally similar elements in a low-dimensional space can be utilized. For
example, faster t-SNE [31, 32] or UMAP [21] could be explored.

The parameter weighting α , β , and γ of the semantic, displacement,
and alignment losses, respectively, are hyper-parameters that require
careful consideration since they represent different aspects of data.
Through experimentation, we identified a set of weights for each layout
that performed consistently well across our cases. Further analysis of
these parameter weightings has been left as future work. Additionally,
determining the standard deviation, σ , for the Gaussian used in the
displacement losses (Cc

d , Cp
d ) depends on user preferences. A larger

σ is sufficient if clear distinctions between iterations are not crucial,
while smaller values may be preferred otherwise.

Concerning the proposed radial layout, we utilize Euclidean
distances for the Cs in the low-dimensional space. While empirically,
this form was still found to work well in the radial layout, the distance
does not follow the ring structure of the layout and hence can be
improved. For example, if two similar points, for example, are
initially positioned opposite to each other on a ring, the Euclidean
distance metric tends to pull them closer across the rings and not
follow the ring structure of the level. This is compensated through the
displacement loss, Cp

d , which is designed to keep points close to the
ring. While the average gradient results in a movement along the ring,
the optimization process could be enhanced by designing a polar-space
alternative for the Cs loss in the low-dimensional space. However,
this poses some challenges to gradient correctness for polar coordinates.

TDL: Concerning T DL’s analysis pipeline, the role of an im-
age encoder is essential to study the evolution of specific attributes
of data. Data can evolve in different dimensions of change, for
example, shapes, colors, or more generic semantic changes of the
images themselves. Our exploration has predominantly involved
simple encoders such as classifiers and foundational image encoding
models like CLIP [34]. While our focus was the evolution of
higher-level semantic attributes like hair color or object type like dog
in diffusion images across iterations, other evolution dimensions can
also be explored. For instance, the evolution of shapes [47], internal
model, i.e., Unet features [7], or the evolution of concept-keyword
associations over iterations [25] across various datasets could be
explored. Exploring the Unet features is not straightforward since
they do not have a latent space, owing to their skip connections, and
different layers are important in different iteration steps [33, 39].
Finally, developing advanced interactive interfaces could enhance
the analysis of the evolutionary embedding layout generated by
T DL. For example, better edge bundling methods could allow the
evolution of modes to be less cluttered. Images visualized on the
outer portions of the layouts could be sampled to be better represen-
tatives of the respective cluster. Additionally, techniques like word
cloud embedding could support the exploration of complex prompt sets.

Scalability: Diffusion models consist of several iterations, of-
ten in the order of 1000. While popular methods [24, 36] reduce
this to less than 100, the volume of data still remains substantial for
visualization. This challenge is particularly observed in radial layouts,
where the inner circles are allotted less space. In our exploration,
we sub-sampled iterations in an evenly spaced manner to mitigate
visualization difficulties. However, more effective interactive sampling
methods can be used. For example, literature [6, 33] indicates a
composition phase where content is created, followed by a denoising
phase to refine details. Users could interactively adjust the sampling,

potentially selecting more steps initially and fewer later in the process
to facilitate more efficient analysis. Another approach to address
visual clutter is to leverage hierarchical embedding methods such
as hierarchical stochastic neighborhood embedding or HSNE [29].
Finally, the evolution of only a few attributes can be studied at a single
time due to limitations in the number of colors used to encode data
attributes like hair color discernible by the human eye. There is, hence,
a need for sequential prioritization, selection, and analysis of attributes
in the current setting.

Future Applications: While the main focus of T DL is to sup-
port an understanding of data evolution in the generative process
of diffusion models, its applicability extends to several practically-
oriented downstream tasks. First, exploring branching patterns and
when dataset modes emerge are relevant for designing architectures.
For example, noise schedulers can be designed [14] to generate
desired branching patterns in an informed way. Further, if all attribute
modes of interest manifest in early iterations, the number of iterations
could be reduced, or these steps can possibly be skipped entirely [6].
Next, the exploration of attribute entanglements is widely studied
in literature [49, 51]. T DL serves as a valuable tool for visualizing
these entanglements. An extension of T DL could support interactive
data generation processes by providing visualizations to help users
understand and influence the generation process. This enhancement
would empower users to interactively explore and tune the data
generation process according to their specific needs and preferences.
Lastly, the proposed evolutionary embedding can be extended to
diffusion models beyond text-to-image, generic DL models, such as
deep convolutional neural network feature evolution across layers and
potentially other (non-image) high-dimensional evolutionary data.

9 CONCLUSIONS

Diffusion models iteratively reconstruct corrupted data, evolving noisy
images into refined outputs. Understanding this data evolution is rele-
vant for interpreting model behavior and the learned distribution, but
is complex due to its high-dimensional evolutionary nature. Existing
methods like t-SNE to study high-dimensional data do not preserve this
iterative structure, limiting its analysis. Hence, we propose the Tree
of Diffusion Life (T DL), a method to gain a holistic understanding of
the data evolution in the generative process of diffusion models. T DL
samples the generative space by extracting instances of several prompts,
employing image encoders to extract semantic meaning from them. We
introduce an evolutionary embedding method to explicitly preserve the
iterative context while maintaining the high-dimensional data structure
to facilitate the analysis of data evolution. This evolutionary embedding
includes three loss metrics - a standard t-SNE loss to group semantically
similar elements, a displacement loss to group elements per iteration,
and an instance alignment loss for an instance’s elements across it-
erations. We propose rectilinear and radial embeddings to facilitate
analysis. To achieve meaningful semantic distances, images are pro-
jected to an intermediate space using image encoders such as classifiers
of foundational models like CLIP. Using different prompt sets, we show
the versatility of T DL by applying it to two prominent text-to-image
diffusion models, GLIDE and StableDiffusion. We demonstrate T DL’s
relevance in studying the evolution of data, offering valuable insights
into the image generation process of diffusion models.

Looking ahead, T DL sets the basis for potential extension to various
practical downstream tasks, such as specific tools to explore entangle-
ments between data attributes or supporting interactive generation. In
summary, T DL shows promise in enhancing our understanding of data
evolution in diffusion models and its broader implications.
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SUPPLEMENTAL MATERIALS

Fig. 11: Exploring neighborhood preservation with Qt
trust and Qt

cont for the
proposed radial layout across (a) different β values with α = 1, γ = 0.05,
and (b) different γ values with α = 1, β = 5. Embeddings are derived
from ĥi

t−1. While Qt
trust across various β values in (a) appear comparable,

Qt
cont exhibits noticeable variations. Despite β = 1 yielding the best

Qt
cont values, it resulted in poor visual separability between iterations

shown in Fig. 15. Conversely, β ∈ 3,5 are comparable in preserving high-
dimensional neighborhoods. Hence, β = 5 was selected for improved
iteration separation seen in Fig. 15. Further, Qt

cont and Qt
trust in (b)

display degradation with γ = 0.2, while γ ∈ 0.01,0.05 remain comparable
in preserving neighborhoods. We hence choose γ = 0.05 since lower
values result in insufficient alignment.

Fig. 12: Exploring neighborhood preservation with Qt
trust and Qt

cont for
the proposed rectilinear layout across (a) different β values with α = 1,
γ = 0.2, and (b) different γ values with α = 1, β = 5. Embeddings are
derived from ĥi

t−1. Qt
trust and Qt

cont across various β (a) are comparable.
However, in (b), Qt

cont and Qt
trust show degradation, especially when

γ = 0.3. Lower γ values preserve neighborhoods similarly. In Fig. 16, both
γ = 0.2 and γ = 0.3 led to good alignments; however, the neighborhood
preservation deterioration with γ = 0.3 prompts our choice of γ = 0.2.

Fig. 13: Exploring the hyperparameter spacing s used to set the ring
offsets (r̄t ) per iteration, t, where r̄t =(T −t)∗s. Here, histograms illustrate
the distribution of polar radii ri

t for radial embedding points lit , projected
from ĥi

t with α = 1, β = 5, and γ = 0.05. Each histogram is color-coded by
its corresponding iteration t, with T representing noise. A clear separation
between iterations is observed when s = 20, prompting us to use this
value for experiments. However, excessively large values of s run the risk
of insufficient space allocation for early time steps. We observe similar
insights for the rectilinear layout at s = 20; hence we use the same value.

Fig. 14: Exploring the iteration separation across β values for the radial
layout more systematically. Histograms are used to illustrate the distri-
bution of polar radii ri

t for radial embedding points lit , projected from ĥi
t

with α = 1, γ = 0.05, and s = 20. A clear separation between iterations
is observed when β = 5. The same insights are used for the rectilinear
layout at β = 5. We use the same value for both the radial and rectilinear
layouts.



Fig. 15: Exploring different β and γ weightings for the radial layout losses Cp
d and Cp

a respectively, with α = 1. When β = 1, the iterations are
poorly separated. Increasing β = 3 enhances separation, yet inner clusters remain insufficiently distinguished. While β ∈ {5,7}, the iterations
display well-defined separation. β = 5 is chosen to maintain the t-SNE cluster structure while meeting our objectives. Similarly, with γ = 0.01, points
demonstrate poor alignment, hindering the exploration of data evolution. Increasing γ values of 0.05 and 0.1 leads to sufficient alignment. γ = 0.05 is
selected based on the above insights and neighborhood quality metrics. All embeddings in this document are on the ImageNet objects case, where
the noisy representations ĥi

t are first encoded with a classifier.

Fig. 16: Exploring different β and γ weightings for the rectilinear layout losses Cc
d and Cc

a respectively, with α = 1. Similar to previous experiments, for
β ∈ {1,3}, the iterations exhibit poor separation, with unclear links between points and iteration steps. A minimum value of β = 5 is necessary to
achieve sufficient separation and is hence selected. γ = 0.05 and γ = 0.1 result in inadequate alignment of clusters across iterations. While γ = 0.2
and γ = 0.3 produce satisfactory results, we choose γ = 0.2 to minimize changes to the t-SNE layout while meeting our goals to study data evolution.



Fig. 17: Our proof of concept front-end enables analysis of the evolutionary embeddings produced by T DL. At the center (a) is our proposed
evolutionary embedding, which is the outcome of T DL. The above shows the radial layout, but the rectilinear one can be retrieved with the buttons
on the top-right of (a). Images corresponding to points at every n degree are displayed along the outer ring of the layout (a). A control panel on
the left (b) supports data filtering, visualizing, and coloring options. Selected images are displayed on the right (c) in an image viewer to enable
understanding of the embedding. Points can be filtered based on the iteration t, the path length (b.1), or prompt keywords (b.4). Some visualization
options, such as deciding the number of images to be displayed on the outer ring, the smoothness of the paths, and the interpolation factor to group
paths of a cluster, are provided (b.2). Points in the embedding can be encoded by adjustable colors based on the prompt or a keyword within a
prompt (b.4). Lastly, images in the image viewer can be grouped by time step or color code to enable analysis (b.3).
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