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Abstract

Objective. Sleep staging based on full polysomnography is the gold standard in the diagnosis of many
sleep disorders. It is however costly, complex, and obtrusive due to the use of multiple electrodes.
Automatic sleep staging based on single-channel electro-oculography (EOG) is a promising
alternative, requiring fewer electrodes which could be self-applied below the hairline. EOG sleep
staging algorithms are however yet to be validated in clinical populations with sleep disorders.
Approach. We utilized the SOMNIA dataset, comprising 774 recordings from subjects with various
sleep disorders, including insomnia, sleep-disordered breathing, hypersomnolence, circadian rhythm
disorders, parasomnias, and movement disorders. The recordings were divided into train (574),
validation (100), and test (100) groups. We trained a neural network that integrated transformers
within a U-Net backbone. This design facilitated learning of arbitrary-distance temporal relationships
within and between the EOG and hypnogram. Main results. For 5-class sleep staging, we achieved
median accuracies of 85.0% and 85.2% and Cohen’s kappas of 0.781 and 0.796 for left and right EOG,
respectively. The performance using the right EOG was significantly better than using the left EOG,
possibly because in the recommended AASM setup, this electrode is located closer to the scalp. The
proposed model is robust to the presence of a variety of sleep disorders, displaying no significant
difference in performance for subjects with a certain sleep disorder compared to those without.
Significance. The results show that accurate sleep staging using single-channel EOG can be done
reliably for subjects with a variety of sleep disorders.

1. Introduction

There is alarge demand for accurate, inexpensive, and reliable sleep staging methods, as it serves as an essential
element in the diagnosis of many prevalent sleep disorders. Sleep staging, as defined by the American Academy
of Sleep Medicine manual (Troester et al 2023), is the process of classifying 30 s segments of sleep, known as
epochs, as belonging to one of five distinct sleep stages: wake (W), rapid eye movement (REM), or non-REM
(NREM) stage 1-3. The resulting visualization of the sequence of sleep stages is called a hypnogram. Following
the AASM manual, gold-standard sleep staging is carried out by a certified technician after visual analysis of at
least the following signals: three scalp electroencephalography (EEG) electrodes, two electro-oculography
(EOG) electrodes, and two chin electromyography (EMG) electrodes. Measuring all these signals is costly and
causes subject discomfort. For example, the EEG electrodes have to be placed on the scalp above the hairline.
Moreover, human inter-rater agreement is limited in this task, averaging around 82.6% (Rosenberg and Van
Hout 2013). The need for the full EEG/EOG/EMG montage in the context of sleep staging has recently been
called into question (Lambert and Peter-Derex 2023), as only a subset of the EEG/EOG/EMG signals or even
surrogate signals might be sufficient for this task.

© 2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
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Automatic sleep stage scoring has been widely researched as an alternative. Unlike human technicians, these
automatic scoring algorithms are much more flexible in terms of their input signals and do not require the full
EEG/EOG/EMG montage. For example, automatic staging using only EEG electrodes already yields
performance on par with the human inter-rater agreement (Phan and Mikkelsen 2022). Alternatively, surrogate
measurements can also be leveraged, such as instantaneous heart rate, body movement, respiration, and many
more (Bakker eral 2021, Imtiaz 2021, Fonseca et al 2023, Zhai et al 2023). However, these surrogate trackers do
not yet reach the same performance as the human inter-rater agreement. Moreover, they typically perform only
4-stage classification, merging the N1 and N2 into a combined N1/N2 ‘light sleep’ stage.

Automatic scoring methods can not only output the ‘hard’ hypnogram but also a hypnodensity
graph (Stephansen et al 2018). The hypnodensity graph is a visual representation of the probability assigned to
each sleep stage by an automatic scoring algorithm, instead of only the most likely sleep stage used to create the
‘hard” hypnogram. One can interpret the hypnodensity graph as the sleep stage uncertainty or ambiguity of the
method (van Gorp et al 2022). The hypnodensity concept has gained much attention recently, as it has been
shown to match well with the label distribution of a human panel and potentially carries more clinically relevant
information than the hypnogram (Stephansen et al 2018, Bakker et al 2022, Anderer et al 2023, Huijben et al
2023).

Asamiddle ground between EEG and surrogate sleep staging, single-channel EOG staging has been
proposed in the literature. EOG is advantageous when compared to EEG as it is measured below the hairline, can
be self-applied (Virkkala et al 2008), and can even be measured with dry electrodes embedded in a sleep mask
(Liang et al 2015, Hsieh et al 2021). At the same time, some amount of desirable EEG interference gets coupled
into the EOG signal. Automatic sleep staging algorithms can pick up on and exploit this EEG interference to
further enhance their performance (Zhu et al 2023). This is in contrast to the AASM rules for human scorers,
where the EOG is typically used to identify rapid and slow eye movements, and the EEG interference is typically
undesirably. Many examples of sleep staging algorithms based solely on EOG can be found in the literature
(Virkkala et al 2007, 2008, Kuo et al 2014, Liang et al 2015, Olesen et al 2016, Rahman et al 2018, Fan et al 2021,
Hsieh eral 2021, Zhu et al 2023). However, the aforementioned studies almost exclusively focus on small cohorts
of healthy subjects. Zhu et al (2023) recently showed that 5-stage classification with the EOG is possible for
subjects with a variety of sleep disorders, but they only used a limited dataset of 26 subjects.

We here implement a novel single-channel EOG staging algorithm using state-of-the-art techniques.
Following recent trends in deep learning (Song et al 2021, Karras et al 2022), we leveraged a network based on
transformers (Vaswani et al 2017) embedded in a U-Net backbone (Ronneberger e al 2015). The U-Netisa
convolutional neural network that has shown strong results in a variety of medical segmentation tasks due to its
use of a multiscale architecture with skip connections. Its limited field of view is expanded to include the entire
night using transformers. The resulting architecture can learn to exploit temporal relations at arbitrarily large
time scales.

In this manuscript, we for the first time perform single-lead EOG staging on a relatively large clinical
population from the SOMNIA (Sleep and OSA Monitoring with Non-Invasive Applications) dataset (van Gilst
etal 2019). In total, 774 recordings were used, which were split into 574 train, 100 validation, and 100 hold-out
test recordings. We included subjects with a large variety of sleep disorders, including insomnia, sleep-
disordered breathing, hypersomnolence, circadian rhythm disorders, parasomnias, and movement disorders.

2. Methods

2.1. Dataset

We made use of recordings from the SOMNIA dataset gathered at the Sleep Medicine Center Kempenhaeghe
from subjects with a large variety of sleep disorders (van Gilst er al 2019). We included recordings from subjects
who underwent a full polysomnography (PSG) between 2017-01-01 and 2021-02-17. The inclusion criteria
were: at least 18 years old, presence of the full PSG (which included EOG), and the simultaneous measurement of
wrist-worn photoplethysmography (PPG) and actigraphy for future analysis. We excluded recordings with
interventions, such as CPAP usage.

In total, 774 overnight recordings were included from 769 subjects, as five subjects underwent two nights of
PSG. Each subject underwent an overnight diagnostic sleep study at the Sleep Medicine Center Kempenhaeghe
as part of standard clinical care. During the night, a full polysomnography (PSG) was recorded and subsequently
manually scored following the AASM guidelines. The bio-electric potentials of EEG, EOG, and EMG were
recorded using Ag/AgCl surface electrodes from MFI B.V. (the Netherlands). These signals were then amplified
and recorded using a Grael PSG system from Compumedics (USA). For more information about the entire
measurement setup, please refer to the original protocol publication (van Gilst et al 2019).
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Figure 1. The left ‘E1” and right ‘E2° EOG derivations as specified by the AASM manual and used in this study. Note that both
derivations are referenced to the same electrode placed on the right mastoid behind the ear called ‘M2’. We also show an example of
what the signals look like for an epoch of N3 sleep. Here, delta waves caused by desirable EEG contamination in the EOG signal are
clearly visible.

Table 1. Sleep disorders present in different splits of the dataset.”

Diagnosis Train Val. Test All
Insomnia 233 40 32 305
Sleep-disordered breathing 344 53 49 446
Hypersomnolence 42 8 11 61

Circadian disorder 13 5 6 24
Parasomnia 74 25 37 136
Movement disorder 104 25 26 155
Other 8 1 2 11

None 17 3 2 22

Number of recordings 574 100 100 774

* Many subjects had multiple primary diagnoses of sleep disorders,
thus the columns do not necessarily add up to the total number of
recordings.

Sleep disorder diagnosis was established by a physician following the international classification of sleep
disorders, third edition (American Academy of Sleep Medicine 2023). We merged the different sleep disorders
into 8 categories, including an ‘other’ category, which includes sleep disorders occurring in less than 10
participants in this dataset, for example ‘sleep-related headache’, and a ‘none’ class in which the primary
diagnosis is not a sleep-related disorder. Note that 41% of subjects had more than one sleep disorder present,
which is unsurprising since the Sleep Medicine Center Kempenhaeghe is a tertiary sleep clinic.

The dataset was split into 574 train, 100 validation, and 100 hold-out test recordings. The split was made
based on the date of the recording, all recordings before 2019-06-04 were included in the train set, the recordings
made between 2019-06-04 and 2020-02-06 were included in the validation set, and the newest recordings were
used as the hold-out test set. All of the 100 recordings in the hold-out test set came from unique subjects which
were not included in either the train or validation sets. See table 1 for the distribution of sleep disorders over the
different sets.

2.2.EOG derivations

From the full PSG, we selected the two EOG channels ‘E1-M2’ and ‘E2-M2’, which correspond to the left and
right EOG, respectively. Following the AASM specifications, the ‘E1’ electrode is placed 1 cm to the leftand 1 cm
below the left outer canthus, and the ‘E2’ electrode is placed 1 cm to the right and 1 cm above the right outer
canthus. The ‘M2’ electrode is placed on the right mastoid, behind the ear. A visual overview is given in figure 1.
Because the EOG derivations are not placed symmetrically, we separately evaluated the usage of the left and right
EOG derivation in the hold-out test set.

2.3. Preprocessing
We first resampled the EOG from 512 to 128 Hz. Furthermore, we performed band-pass filtering between 0.3
and 49 Hz using fifth-order Butterworth filters applied both in the forward and backward directions, to ensure a
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Figure 2. Architecture of the proposed EOG staging network. The kernel size of each convolution is listed between brackets.

zero-phase filtering operation. Additionally, we applied log-normalization per recording to both the EOG
signals following (Stephansen et al 2018):

x = sign(X) - IOg(PL(li) + 1), (1)
95

where % corresponds to an EOG signal of a recording before rescaling, x is the rescaled EOG signal, and Pos (X) is
the 95th magnitude percentile. This type of normalization was applied as it is robust against outliers in the data
due to the use of the 95th magnitude percentile. Moreover, it pushes up very small values and pushes down very
large values due to the use of the logarithm. Lastly, we zero-padded all signals to a size 7 x 2* = 1792 epochs for
implementation purposes. This zero-padding was removed after inference, and before performance evaluation.

2.4. Network architecture

To perform accurate automatic sleep staging using single-channel EOG, we employed transformers (Vaswani
etal2017) embedded in a U-Net backbone (Ronneberger et al 2015). Specifically, we adapted the DDPM++
architecture from Song et al (2021), but with a few changes to make it more suited to the EOG staging task.
Firstly, the DDPM++ network was originally proposed for images and as such, it makes use of 2D convolutions.
We changed them to 1D convolutions in order to work with time series. Secondly, we added positional encoding
to all the self-attention layers, creating transformer-encoder architectures, which are able to learn arbitrary-
distance temporal relations within and between the EOG and hypnogram. Thirdly, since we apply the
architecture as a discriminative neural network and not in its originally proposed setting of diffusion modeling,
we did not make use of ‘noise embedding’. Lastly, we made the ‘U’ asymmetrical by adding an epoch encoder,
since the EOG was of much higher dimension than the output hypnogram. See figure 2 for an overview of the
network architecture. Figure 2 shows a visual overview of the network architecture, which consists of four
distinct stages. The first stage is where the EOG signal is processed by an epoch encoder to extract epoch-level
features. To do this, the input signal is compressed from a size of 1792 epochs x 30 s x 128 samples to 1792
epochs x 16 features. Further details regarding the epoch encoder can be found in appendix A. 1.

After the epoch encoding, the output is fed through a U-Net, which is composed of an encoder, bottleneck,
and decoder. The U-Net has skip connections added between the encoder and decoder to overcome vanishing
gradient problems and allow the network to learn feature embeddings at different time scales in the hypnogram.
Atthe end of the network, a softmax activation function is applied to obtain the probability of each sleep stage at
each epoch, which can be interpreted as the hypnodensity. More information about the U-Net encoder,
bottleneck, and decoder can be found in appendices A.2, A.3, and A.4, respectively.

The four stages of the network consist of standard building blocks such as convolutional layers, up- and
down-sampling layers, dropout layers, and group normalization layers (Wu and He 2018). Additionally, ResNet
and transformer layers are used, which are composed of smaller simpler layers, as shown in figure 2. For an in-
depth description of the ResNet and transformer layers, please refer to appendix A.5 and appendix A.6,
respectively.
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2.5. Training

The neural network was trained using both the left and right EOG signal derivations. This was achieved by
loading each training recording twice in a dataset iteration during training, once using the left EOG derivation
and once using the right EOG derivation. The network was trained using the Adam optimizer (Kingma and
Ba 2015) with a learning rate of 10~°. Training continued until convergence, which was monitored using the
validation set. Convergence was considered to be reached when the validation loss did not improve for 50
consecutive dataset iterations.

2.6. Testing

After training, we employed the network on the 100 hold-out test recordings using both the left and right EOG
derivations. The output hypnograms obtained for each EOG derivation were compared to that of the gold-
standard human scoring. For each recording and EOG derivation separately, we computed agreement metrics
such as accuracy, Cohen’s kappa, and per-class F1 scores. We then calculated both the median and the
interquartile range across the 100 test subjects for each metric. Testing was performed in this way in order to
ensure that each recording contributed equally, instead of their contribution being based on the total recording
time. Furthermore, the median was taken since the metrics were not normally distributed. Additionally, this way
of testing allowed for an analysis of each metric per sleep disorder. A confusion matrix was also calculated
separately for each EOG derivation based on all aggregated epochs from all hold-out test recordings.

3. Results

3.1. Metrics
The resulting median and interquartile range per metric and diagnosis across the recordings in the hold-out test
setare shown in tables 2 and 3 for the network using the left and the right EOG derivation, respectively. In order
to aid with comparison to the literature, the mean and standard deviation results are shown in appendix B. As
can be seen from tables 2 and 3, the network achieves a slightly better average performance using the right EOG
compared to using the left EOG. Using a Wilcoxon signed-rank test to compare the kappa values over the 100
test recordings, this difference was found to be statistically significant (p = 0.0014 and test statistic = 1596).
Additionally, we tested within for EOG derivation whether there were significant differences in terms of
kappa between subjects with a certain sleep-disorder and those without that sleep disorder. These tests were
performed using the Mann-Whitney U rank test. Using a significance level of p = 0.05, no significant differences
were found.

3.2. Qualitative examples

A qualitative analysis in terms of the predicted hypnodensities and hypnograms was also performed. To that end,
we plot the network predictions for the most ‘typical’ recordings, which were defined as those recordings where
the network achieved its median performance in terms of Cohen’s kappa for an EOG derivation. Figure 3 shows
the most typical recording for the left EOG derivation, where it achieved a kappa of 0.782, and figure 4 shows the
most typical recording for the right EOG derivation, with a kappa of 0.796. In both figures, we also show the
output using the other EOG derivation. Additionally, appendix C shows qualitative results for random
recordings for each diagnosis.

From figures 3 and 4, it can be observed that the predicted hypnograms line up accurately with the ground
truth. However, it can be observed that large number of N1 epochs are missed by the network. The difficulty of
scoring N1 epochs can also be observed by analyzing the hypnodensities, especially those in figure 4. Uncertainty
between the wake and N1 class can be observed at 5 and 9 h into the night.

3.3. Confusion matrices

The confusion matrices calculated over all epochs are shown in figure 5. Overall, there were very few wrongly
predicted classes. Only the N1-stage sensitivity was low, with most of the confusion being towards the N2 class.
Additionally, there was some confusion with respect to scoring a ground-truth N3 epoch as N2.

4. Discussion

Modern sleep medicine demands accurate and inexpensive sleep staging systems that can reliably be trusted
regardless of any underlying sleep condition. Automatic sleep staging using single-channel EOG promises to be a
suitable solution to this challenge. However, most EOG staging algorithms described in literature have almost
exclusively been tested on healthy subjects, or on small cohorts of patients with sleep disorders. We for the first
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Table 2. Results for the network using the left EOG derivation, we show the median™/the interquartile range across the recordings.

F1 scores

Diagnosis # Testrecordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 86.7%/7.4% 0.812/0.103 0.906,/0.093 0.553/0.087 0.891/0.078 0.850/0.125 0.895/0.095
Sleep-disordered breathing 49 84.3%/7.9% 0.771/0.102 0.888,/0.099 0.566,/0.132 0.865/0.075 0.849/0.127 0.865/0.072
Hypersomnolence 11 85.8%/4.4% 0.781/0.062 0.898/0.075 0.598/0.195 0.901/0.063 0.856/0.104 0.867/0.082
Circadian disorder 6 85.6%,/4.3% 0.782/0.059 0.852/0.095 0.514/0.110 0.908/0.048 0.904/0.091 0.860/0.048
Parasomnia 37 84.7%/9.1% 0.768,/0.106 0.874/0.133 0.559/0.137 0.889/0.075 0.842/0.128 0.872/0.053
Movement disorder 26 85.3%/9.4% 0.800/0.130 0.913/0.080 0.560,/0.170 0.874/0.071 0.843/0.080 0.895/0.075
Other 2 89.2%/4.5% 0.844/0.051 0.918/0.057 0.535/0.070 0.887/0.023 0.938/0.009 0.903/0.032
None 2 88.2%/1.8% 0.822/0.032 0.876,/0.044 0.610/0.086 0.908,/0.006 0.945/0.010 0.841/0.021
All 100 85.0%,/8.0% 0.781/0.107 0.894,/0.109 0.548/0.136 0.885/0.074 0.850/0.120 0.871/0.084
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Table 3. Results for the network using the right EOG derivation, we show the median®/the interquartile range across the recordings.

F1 scores

Diagnosis # Test recordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 86.1%/7.1% 0.812/0.095 0.918/0.091 0.583/0.113 0.892/0.069 0.871/0.106 0.901/0.074
Sleep-disordered breathing 49 84.9%/5.8% 0.795/0.085 0.897/0.079 0.571/0.101 0.878,/0.058 0.869/0.120 0.871/0.094
Hypersomnolence 11 84.5%/7.6% 0.766/0.114 0.891/0.054 0.565/0.144 0.888/0.072 0.814/0.128 0.839/0.077
Circadian disorder 6 85.6%/5.7% 0.788/0.073 0.877/0.073 0.513/0.051 0.914/0.040 0.920/0.067 0.849/0.066
Parasomnia 37 84.5%/7.9% 0.788/0.121 0.896/0.123 0.532/0.118 0.886,/0.081 0.863/0.150 0.877/0.070
Movement disorder 26 84.7%/8.5% 0.783/0.098 0.912/0.081 0.569/0.124 0.872/0.060 0.860/0.105 0.881/0.074
Other 2 89.1%/4.3% 0.844/0.048 0.910/0.064 0.526/0.074 0.897/0.014 0.958/0.017 0.853/0.018
None 2 88.5%/1.8% 0.828,/0.033 0.888/0.032 0.614/0.107 0.910/0.002 0.950/0.013 0.832/0.028
All 100 85.2%/6.9% 0.796/0.103 0.902/0.107 0.551/0.123 0.882/0.064 0.867/0.129 0.874/0.097

* The median for an even number of recordings was defined as the average of the middle two values.
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Figure 3. Qualitative results for the recording where the left EOG derivation achieved median performance in terms of Cohen’s kappa
(0.782). This subject had a parasomnia diagnosis.
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Figure 4. Qualitative results for the recording where the right EOG derivation achieved median performance in terms of Cohen’s
kappa (0.796). This subject had an ‘other’ diagnosis.

time we show that automatic sleep staging using single-channel EOG can be done reliably for subjects with a
variety of sleep disorders in a relatively large cohort.

4.1. Inter-rater agreement

To put our sleep staging results into context, we can compare it to the human inter-rater agreement which serves
as an upper limit on performance (van Gorp et al 2022). The human inter-rater agreement has been widely
studied in the context of the AASM scoring rules, with Rosenberg and Van Hout (2013) conducting an especially
large study comparing the scoring behavior of over 2500 scorers. When comparing a single scorer against a
group consensus, Rosenberg and Van Hout (2013) found an average inter-rater agreement of 82.6%. Splitting
this agreement into the different stages they found an 84.1% agreement for Wake, 63.0% for N1, 85.2% for N2,
67.4% for N3, and a 90.5% agreement for REM.

The sleep technologists at the SOMNIA data collection site, Sleep Medicine Center Kempenhaeghe, have
shown a very high inter-rater agreement, with around 86% agreement on both the AASM interrater agreement
program (Rosenberg and Van Hout 2013) and internal institutional inter-rater agreement assessment.
Additionally, a second scoring by another technician of the same institution was available for 14 recordings in
the dataset used in the present study. This allowed us to estimate the inter-rater agreement for this subset, which
was in average 86.1%. Separately evaluating agreement for different stages results yielded a 93.1% agreement for
Wake, 64.8% for N1, 85.6% for N2, 88.1% for N3, and 89.1% for REM. Comparing these results with the
confusion matrices from figure 5, we can see that our EOG system reaches similar levels of performance.

While our N1 performance is the lowest out of all the classes, 53.5% and 53.3%, this is also the case for the
human inter-rater agreement, which was found to be only 63.0% and 64.8% by Rosenberg and Van Hout (2013)
and internally at Kempenhaeghe, respectively. This underlines the difficulty of accurately detecting the N1 stage,
even for human scorers, and shows that our N1 classification performance is actually close to the expected upper
limit, defined by inter-rater human agreement. The high degree of uncertainty about the N1 class is also reflected
in the hypnodensity graphs, see for example 4. Nikkonen et al (2023) also point out the low agreement of the N'1
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Figure 5. Confusion matrices for the network with the total number of epochs listed between brackets. The EOG derivations used are
(a) left EOG, (b) right EOG.

stage between human scorers and highlight different factors that contribute it. Among these are: stage
transitions, in particular N1 to N2, the low amount of N1 sleep in general, and the variety in alpha frequencies
between individuals, which may even not be present at all.

Most strikingly, our N3 classification performance is substantially higher than the inter-rater agreement
found by Rosenberg and Van Hout (2013), 76.3% and 78.4% versus 67.4%. This is similar to the (human) inter-
rater agreement for the N3 stage in our dataset, which is 88.1%. This can be explained by the fact that Rosenberg
and Van Hout (2013) looked at the differences between scorers coming from a large variety of backgrounds and
institutions, while the technicians from the SOMNIA set all came from the same clinic. This results in lower
ambiguity about the scoring of N3 for a sleep staging algorithm trained with, and evaluated on data from the
same institution (van Gorp et al 2022).

4.2. EOG-enabled sleep staging literature
Automatic sleep staging based solely on the EOG dates back to 2007 (Virkkala et al 2007). Classical machine
learning methods based on feature extraction and classification algorithms such as random forest and support
vector machines were explored first (Virkkala et al 2007, 2008, Kuo et al 2014, Liang et al 2015, Olesen et al 2016,
Rahman et al 2018). More recently, end-to-end learning based on deep neural networks has also been described
(Fan etal 2021, Hsieh et al 2021, Zhu et al 2023). The reported performance metrics for all of these methods have
been promising, with accuracies ranging between 70.8% and 91.7% and Cohen’s kappa ranging between 0.60
and 0.806. However, almost all algorithms have only been validated on datasets of healthy participants and of
limited size, with the largest set used by Virkkala et al numbering 263 subjects. On the other hand, only Zhu et al
(2023) did a study on subjects with a mix of sleep disorders, but with alimited set of only 26 participants.
Besides the standard PSG, custom devices to record the EOG have also been proposed in the literature. As
stated in the introduction, the EOG can for example be measured with dry electrodes embedded in a sleep mask
(Liang etal 2015, Hsieh et al 2021). On the other hand, portable frontal EEG solutions could also be considered,
as the frontal EEG shares many similarities with the EOG. This type of solution dates back even earlier than
single channel EOG sleep staging, with devices such as QUISI (Ehlert et al 1998) and Biosomnia (Schweitzer et al
2004). Modern iterations on this concept can also be found in the literature (Finan et al 2016, Bresch et al 2018).
To allow for widespread adoption in the clinic, automatic staging based on EOG has to achieve reliable
performance not only on healthy subjects but especially on those subjects with (possibly multiple) sleep
disorders. A particular strength of this study is that we show that EOG staging is possible by evaluating our
method on 100 hold-out test recordings from subjects with a large variety of disorders. The model is robust to
the presence of different sleep disorders, exhibiting no significant differences between these.

4.3. Effect of the EOG electrode location
Performance with the right EOG was significantly higher than with the left EOG. This effect might be explained
by the fact that the right EOG electrode is placed closer to the top of the scalp in comparison to the left EOG, see
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figure 1. Because of this, more desired EEG interference could get coupled into the right EOG, thereby enabling
it to perform more accurate sleep staging. Additional research is however needed to establish what the effect of
EOG electrode placement is on the performance of automatic sleep staging algorithms. This is particularly
important since, for instance, the AASM manual describes both arecommended placement of EOG electrodes
—which we used—but also an ‘acceptable’ placement (Troester et al 2023). Following the acceptable
recommendation, both electrodes are placed 1 cm below the outer canthus and referenced to the Fpz’ electrode,
possibly resulting in different signal characteristics. The proposed algorithm could be trained to adapt to these
differences through transfer learning, a process that has been proven to work well for differences in frontal EEG
electrode placement and acquisition (van der Aar et al 2024).

4.4. Model architecture

The architecture of our sleep staging model is based on highly expressive models found in the score-based
diffusion literature (Song et al 2021, Karras et al 2022). These models rely on a U-Net backbone, which was
originally proposed for medical image segmentation (Ronneberger et al 2015), and has been applied with success
to the sleep staging task (Perslev et al 2021, van Gorp et al 2023). Additionally, transformer layers were added, to
allow the network to learn associations at arbitrary time scales. This contrasts with convolutional and recurrent
neural networks, which have a strong architectural bias towards learning relationships at smaller time scales and
between neighboring samples. The ability to exploit relationships at long time scales can be very useful in the
context of sleep staging, for example in the application of the REM continuation rule, which states that REM
should be continued to score even in the absence of rapid eye movements under certain conditions such as low
muscle tone and the absence of k-complexes and arousals (Troester et al 2023).

Other sleep staging algorithms employing transformers have also been proposed in the literature. For
example, Phan et al (2022) proposed SleepTransformer which uses single-channel EEG data in a convolution-
and recurrent neural network-free architecture. The employed sequence length in SleepTransformer is however
only 21 epochs, which contrasts with our model, where the entire overnight recording is used. More comparable
with our model, sleep staging algorithms that combine attention or transformer layers with convolutional layers
have been previously described (Qu et al 2020, Zhu et al 2020, Eldele et al 2021).

To evaluate some of the neural network layers used, a post-hoc ablation study was performed, which can be
found in appendix D. Such post-hoc analyses come with the caveat that if one tries to find the parameter settings
with highest test set performance, test set leakage may occur (Kapoor and Narayanan 2023). Still, from the
ablation experiments it can be concluded that the skip connections, group normalization layers, and dropout
layers are essential for good sleep staging performance in this model. Ablating either the large U-Net
convolutions or transformer layers did not lead to a significant change in sleep staging performance, indicating
that both are valid strategies for learning associations between epochs in their own right.

4.5. Limitations

There are some limitations to this study worth remarking. Firstly, training and testing of the network were done
with recordings obtained and scored at the same institution. This could lead to sampling biases in terms of
confounders such as recording characteristics, medication use, and patient demographics. Future work should
investigate the effects of dataset distribution shift on the final performance of the network, as differences in
measurement setup, scoring behavior, and population characteristics between different institutions can impact
performance. However, it is important to note that the dataset used in this study comes from a third-line sleep
clinic and represents one of the more difficult populations to perform sleep staging on.

Secondly, no extensive hyper-parameter search was performed, for example on kernel size or channel depth.
Since the performance of the network was already on par with the inter-rater agreement, we hypothesize that
hyper-parameter tuning would not necessarily lead to significant improvements, at least on this dataset.

Thirdly, our study used EOG channel derivations from a full PSG, as applied by medical specialists. To lower
healthcare costs and enable ambulatory sleep studies, it would be interesting to study the performance of our
network in the context of self-applied EOG electrodes (Virkkala et al 2008) or a mask with dry electrodes (Liang
etal 2015, Hsieh et al 2021). Transfer learning could also be used in this case to overcome eventual changes in
signal characteristics (van der Aar et al 2024).

Fourthly, using a single-channel EOG means that certain measurements can be missed. For example, if the
EOG electrode detaches during the night, there is no backup channel available. Moreover, for certain specific
disorders, single-channel EOG might not be sufficient, for example in the case of sleep-related epilepsy, where
the concurrent measurement of EEG would be beneficial.

Lastly, single-channel EOG may not be the end-all solution, as single-channel EEG or other surrogate
measures can also be leveraged by automatic sleep staging algorithms. Especially the signal measured by a very
frontal EEG electrode would be similar to the current setup. The EOG is however already part of the standard
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AASM PSG setup, while pre-frontal EEG electrodes such as Fp1 and Fp2 are not. When choosing a measurement
setup for sleep staging, a trade-off between signal quality, ease of measurement, cost, and subject (dis)comfort
should be made, depending on the subject and suspected sleep disorder.

5. Conclusion

In summary, we developed an automatic sleep staging algorithm for single-channel EOG leveraging transformers
embedded in a U-Net backbone. We used a relatively large dataset of 774 recordings with a variety of sleep disorders,
splitinto 574 train, 100 validation, and 100 hold-out test recordings. We verified that the performance of our network
was on par with the human inter-rater agreement. Furthermore, we found no significant differences in performance
between subjects with different sleep disorders. The main findings of this study are as follows. Firstly, the proposed
architecture and training mechanism are effective in EOG-based sleep staging. Secondly, the performance of
automatic sleep staging based solely on a single channel EOG comes very close to the human inter-rater agreement.
Thirdly, the differences in location between the left and right EOG electrodes, as recommended by AASM, affect the
sleep staging performance. Lastly, the use of single-channel EOG in automatic sleep staging has shown similar
performance regardless of the underlying of sleep disorders. These results pave the way for the adoption of automatic
sleep staging using single-channel EOG in clinical settings where subjects with complex disorders can be encountered.
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Appendix A. Details regarding the network architecture

In this appendix, we elaborate on the architectural details of the neural network, as shown in figure A1.
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A.1.Epoch encoder

Because the EOG signals and the hypnograms had different sampling frequencies (128 Hz versus 1/30 Hz), we
first needed to downsample the EOG before we could use the U-Net structure of our model. To that end, we
employed a context encoder, which downsampled the EOG signal from R!79>30128x 1t RI792x16 j e a context
encoding of length number of epochs with 16 channels.

The context encoder worked as follows. First, a convolution of kernel size 1 expanded the number of channels
from 1 to 16. Then, a series of two ResNets was employed to extract meaningful features from the EOG signal (see A.5
for further details regarding the ResNet). This pattern was repeated 5 times with 4 downsampling operations between
the 5 blocks. Each downsampling operation used a kernel of [1,1,1,1] and a stride of 4, to effectively downsample the
input by a factor of 4. At the end of the epoch encoder, another convolution of kernel and stride 15 was used, thus
compressing the EOG signal to a feature map of size R17%2* 16 which was used as input to the U-Net encoder.

A.2.U-Net encoder

The U-Net encoder first employed a convolution of kernel size 1 to increase the channel size from 16 to 32. Then, a
Transformer layer together with two ResNet blocks was employed (see A.6 for further details regarding the
Transformer layer). After each ResNet block, a skip connection was added to the U-Net decoder at the same
resolution. This pattern of a transformer with two ResNets was repeated 4 times with 3 downsampling operations in
between. Again, akernel of[1,1,1,1] and a stride of 4 was used in the downsampling operations. Note that in the
original DDPM++ implementation (Song et al 2021), an attention layer was added after each ResNet in the encoder.
However, to bring down the computational complexity of our method and to make the encoder symmetric with the
decoder, we employed only a single transformer layer at the start of each resolution level in the U-Net encoder.

A.3.Bottleneck
In the bottleneck, the feature map was of its smallest size, namely R?8 %16 Here, one transformer layer
sandwiched between two ResNet blocks was used to learn the highest-level features of the hypnogram.

A.4.U-Net decoder

The decoder followed a mirrored structure to the encoder. The skip connections from the corresponding
resolution levels were concatenated to the inputs of each ResNet block. These connections allowed the feature
maps to skip the downward path of the ‘U” and enabled the model to learn both high-and-low level features of
the hypnogram. The upsampling operation of the decoder was implemented using a transposed convolution
with the same filter of [1,1,1,1].

As a final step toward creating a hypnogram, the U-Net decoder employed a convolution of kernel size 1 to map
the input to 5 channels, where each channel corresponded to one of the five sleeps stages. A softmax activation
function was then used to map each channel to a class probability. This creates a ‘hypnodensity’, a soft version of the
hypnogram where each epoch is partially associated with each sleep stage according to some probability (Stephansen
etal2018). If instead a ‘hard’ hypnogram is desired, the argmax of the hypnodensity can be taken.

A.5.ResNet

The ResNet, or Residual Network, was repeated throughout the architecture. It consists of two group normalization
layers and two convolutions in an alternating pattern. Group normalization, as described by Wu and He (2018), applies
alearned normalization across groups of channels, enabling faster training. In our case, each group consisted of 4
channels. The 1D convolutions of the ResNet each used a kernel of size 7 and zero-padding set to ‘same’. Each
convolution was followed by SiLU (Sigmoid Linear Unit) activation (Hendrycks and Gimpel 2016). Additionally, a
spatial dropout layer was added before the second convolution, which drops out entire channels during training with a
probability of 10%. Spatial dropout is a better regularizer for convolutional neural networks, since neighbouring
samples are often highly correlated (Tompson et al 2015). Finally, a residual connection was added to help combat
vanishing gradient problems. To limit the magnitude of the signals, scaling with a factor of skip scale = /0.5 was
applied.

A.6. Transformer layer

The original transformer architecture is a sequence-to-sequence model composed of both an encoder and a
decoder (Vaswani et al 2017). Where each element consists of a scaled dot-product attention layer and an
element-wise feed-forward network. Additionally, positional encoding is added at the start of the encoding and
decoding stacks. We adapt the transformer architecture to be suited for our network. Firstly, we did not use the
decoder, since it is used to generate new sequence in an auto-regressive manner. Secondly, since we embedded
the layers within a larger convolutional neural network, there was no need for separate element-wise feed-
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Figure Al. Architecture of the proposed EOG staging network. The kernel size of each convolution is listed between brackets.

forward networks. lastly, because the attention layers operated at different time scales, we added positional
encoding to each of them.

The positional encoding was implemented using sine-cosine embedding. In this scheme, a positional
encoding matrix is added element-wise to the input sequence of the transformer. To that end, the input
sequence S and positional encoding matrix P should be of the same size: S, P € RE> €, where Lis the length of
the input sequence and Cis the number of channels. The positional encoding matrix is given by:

Py,24) = sin (I - 100072/C)
P(2d+1) = cos (I - 1000-2¢/€), "

withl€[0,1,...,L — 1]andc € [0, 1, ..., C — 1]. This type of encoding enables the transformer to exploit
information about both the absolute and relative positions of samples along the night.

Each of the transformer layers used scaled dot-product self-attention. While the attention mechanism can be
implemented using multiple attention-heads for added complexity, we here only made use of a single head. In
scaled dot-product self-attention, three linear projections are applied to transform the sequence to a query, key,

and value matrix:

Q = SWy, K = SWx, V = SWy, (A.2)

where Wy, Wi, Wy, € RE*C are learned linear projection weightsand Q, K, V € REXC are the query, key, and
value matrices, respectively. These linear projections can be implemented efficiently by a single convolutional
layer of kernel size 1 and output channel size of 3C, as its output can be split along the channel dimension into
the three separate components.

Following a database analogy, the queries are going to look for matching keys and propagate the associated
values to the output, where each individual query, key, and value are found along the rows of their respective
matrices. This process is defined by the scaled dot-product self-attention mechanism:

. QK"
Attention(Q, K, V) = softmax| — |V, (A.3)

NG

where K” denotes the transpose of the key matrix. Moreover, QK € RE*L denotes the attention map. To ensure
that the magnitudes in the attention map do not grow too large, it is scaled down by a factor of 1,/+/C.
Additionally, a softmax activation is applied along the rows of the attention map in order to ensure that the

attention sums to 1.
After the scaled dot-product attention layer, another linear projection using a 1D convolution was applied.
Similar to the ResNet, a residual connection was applied with a scaling of skip scale = +/0.5.

Appendix B. Additional quantitative results per diagnosis

In this appendix, we provide additional quantitative results in terms of the mean and standard deviation across

the recordings, see tables B1 and B2.
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Table B1. Results for the network using the left EOG derivation, we show the mean =+ the standard deviation across the recordings.

F1 scores

Diagnosis # Test recordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 83.7% £ 9.8% 0.767 £ 0.136 0.888 £ 0.081 0.550 £ 0.126 0.843 + 0.140 0.764 £ 0.256 0.834 £ 0.195
Sleep-disordered breathing 49 83.1% =+ 6.5% 0.763 £ 0.090 0.872 £ 0.098 0.546 £ 0.117 0.858 £ 0.065 0.788 £ 0.218 0.828 £ 0.156
Hypersomnolence 11 83.6% =+ 6.4% 0.764 + 0.085 0.869 + 0.103 0.515 £ 0.169 0.881 + 0.055 0.809 + 0.128 0.855 + 0.067
Circadian disorder 6 85.5% =+ 3.6% 0.789 £+ 0.051 0.864 + 0.074 0.546 £ 0.079 0.894 + 0.037 0.834 £ 0.182 0.844 £ 0.051
Parasomnia 37 82.8% =+ 7.6% 0.757 £ 0.106 0.858 £ 0.110 0.546 £0.118 0.847 £ 0.096 0.760 £ 0.248 0.816 £ 0.189
Movement disorder 26 84.0% =+ 6.0% 0.777 + 0.081 0.888 + 0.092 0.539 £ 0.135 0.850 + 0.076 0.801 + 0.169 0.877 £ 0.072
Other 2 89.2% =+ 6.4% 0.844 + 0.072 0.918 + 0.081 0.535 £ 0.099 0.887 £ 0.032 0.938 + 0.013 0.903 + 0.045
None 2 88.2% =+ 2.5% 0.822 £ 0.045 0.876 £ 0.063 0.610 £ 0.121 0.908 £ 0.008 0.945 £ 0.015 0.841 £ 0.030
All 100 83.4% £+ 7.7% 0.763 £ 0.106 0.873 £ 0.093 0.538 £0.124 0.850 £ 0.101 0.800 £ 0.192 0.830 £ 0.165
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Table B2. Results for the network using the left EOG derivation, we show the mean =+ the standard deviation across the recordings.

F1 scores

Diagnosis # Test recordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 86.0% =+ 5.0% 0.800 =+ 0.068 0.904 + 0.063 0.572 £ 0.094 0.872 + 0.069 0.811 £ 0.213 0.865 £ 0.129
Sleep-disordered breathing 49 84.0% =+ 6.1% 0.775 £ 0.085 0.881 £ 0.103 0.553 £0.113 0.868 £ 0.056 0.807 £ 0.207 0.820 £ 0.185
Hypersomnolence 11 82.7% + 6.2% 0.752 + 0.084 0.877 + 0.085 0.507 £ 0.153 0.871 + 0.059 0.785 + 0.146 0.848 + 0.061
Circadian disorder 6 86.1% =+ 3.5% 0.797 £ 0.050 0.871 £ 0.071 0.537 £ 0.044 0.898 + 0.042 0.838 £ 0.206 0.848 £ 0.055
Parasomnia 37 83.8% + 7.2% 0.769 +£ 0.102 0.867 £ 0.122 0.547 £0.114 0.855 £ 0.102 0.765 £ 0.255 0.808 £ 0.219
Movement disorder 26 84.7% =+ 5.6% 0.786 + 0.075 0.897 + 0.083 0.543 £ 0.127 0.858 + 0.075 0.816 + 0.165 0.881 + 0.058
Other 2 89.1% =+ 6.1% 0.844 + 0.068 0.910 £ 0.090 0.526 £ 0.104 0.897 + 0.020 0.958 + 0.024 0.853 £ 0.026
None 2 88.5% =+ 2.5% 0.828 £ 0.046 0.888 £ 0.046 0.614 £ 0.151 0.910 £ 0.004 0.950 + 0.018 0.832 £ 0.039
All 100 84.5% £ 6.0% 0.779 £ 0.083 0.884 £ 0.091 0.547 £ 0.110 0.862 £ 0.079 0.813 £ 0.187 0.837 £ 0.158
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Appendix C. Qualitative results per diagnosis

In this appendix, we provide additional qualitative results for a random recording from each diagnostic group,
see figures C1-C8.
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Figure C1. Qualitative results for a random recording from a subject with an ‘insomnia’ diagnosis.
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Figure C2. Qualitative results for a random recording from a subject with a ‘sleep-disordered breathing’ diagnosis.
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Figure C3. Qualitative results for a random recording from a subject with a ‘hypersomnolence’ diagnosis, note that this subject also
had a ‘sleep-disordered breathing’ diagnosis.
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Figure C4. Qualitative results for a random recording from a subject with a ‘circadian disorder’ diagnosis, note that this subject also
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Figure C5. Qualitative results for a random recording from a subject with a ‘parasomnia’ diagnosis.
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Figure C6. Qualitative results for a random recording from a subject with a ‘movement disorder’ diagnosis.
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Figure C7. Qualitative results for a random recording from a subject with an ‘other’ diagnosis, note that this subject also had a ‘sleep-
disordered breathing’ diagnosis.
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Figure C8. Qualitative results for a random recording from a subject with no primary sleep diagnosis.

Appendix D. Ablation experiment

A post-hoc ablation study was performed to evaluate some of the neural network layers used. Five different
ablations were performed and the resulting networks were trained and evaluated in a similar way as the base
network proposed in the manuscript. The ablations were as follows. Firstly, the group normalization layers were
ablated, as shown in figure D1. Secondly, the dropout layers were ablated, as shown in figure D2. Thirdly, all the
skip connection were ablated, as shown in figure D3. Fourthly, all transformer layers were ablated, as shown in
figure D4. Lastly, we ablated the convolutions in the U-net by setting their kernel sizes to ‘1’. This effectively
changes them to linear layers, without any ability to aggregate information between neighbouring epochs. This is
shown in figure D5.

The resulting test set performance in terms of median and interquartile range is shown in table D1. We tested
if the resulting metrics were significantly different from the base performance using Wilcoxon signed-rank tests,
wit a significance value of p = 0.05.

From table D1, it can be observed that the group normalization layers, dropout layers, and skip connections
are essential for the network to have good sleep staging performance. As the performance metrics for these
ablations are significantly lower than those of the base network. Additionally, we can see that the U-Net, which is
responsible for aggregating information between neighbouring epochs, can retain its performance using either
only convolutions or only transformers. Both are valid strategies for enabling the network to learn associations
between epochs.
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Figure D4. Architecture for ‘transformer’ ablation.
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Figure D5. Architecture for ‘convolution’ ablation.

Table D1. Results for the different ablation experiments. We show the median/the interquartile range across the recordings. If an ablation
result was significantly different from the base result, an asterisk is displayed.

Left EOG Right EOG

Ablation Accuracy Kappa Accuracy Kappa

Base 85.0%,/8.0% 0.781/0.107 85.2%/6.9% 0.796/0.103
groupnorm 82.2%/9.9%" 0.745/0.126" 83.5%/10.0%" 0.759/0.136"
dropout 81.6%/7.2%" 0.738/0.097" 83.0%/6.9%" 0.754/0.088"
skip connections 70.8%/10.3%" 0.570/0.151" 71.5%/9.7%" 0.576,/0.137"
transformer 84.3%/7.0% 0.776/0.101 84.9%/6.5% 0.790/0.097
convolution 85.1%/8.0% 0.787/0.113 85.3%/7.0% 0.797/0.100
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