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Abstract
Objective. Sleep staging based on full polysomnography is the gold standard in the diagnosis ofmany
sleep disorders. It is however costly, complex, and obtrusive due to the use ofmultiple electrodes.
Automatic sleep staging based on single-channel electro-oculography (EOG) is a promising
alternative, requiring fewer electrodes which could be self-applied below the hairline. EOG sleep
staging algorithms are however yet to be validated in clinical populations with sleep disorders.
Approach.Weutilized the SOMNIAdataset, comprising 774 recordings from subjects with various
sleep disorders, including insomnia, sleep-disordered breathing, hypersomnolence, circadian rhythm
disorders, parasomnias, andmovement disorders. The recordings were divided into train (574),
validation (100), and test (100) groups.We trained a neural network that integrated transformers
within aU-Net backbone. This design facilitated learning of arbitrary-distance temporal relationships
within and between the EOGand hypnogram.Main results. For 5-class sleep staging, we achieved
median accuracies of 85.0% and 85.2% andCohen’s kappas of 0.781 and 0.796 for left and right EOG,
respectively. The performance using the right EOGwas significantly better than using the left EOG,
possibly because in the recommended AASM setup, this electrode is located closer to the scalp. The
proposedmodel is robust to the presence of a variety of sleep disorders, displaying no significant
difference in performance for subjects with a certain sleep disorder compared to thosewithout.
Significance.The results show that accurate sleep staging using single-channel EOG can be done
reliably for subjects with a variety of sleep disorders.

1. Introduction

There is a large demand for accurate, inexpensive, and reliable sleep stagingmethods, as it serves as an essential
element in the diagnosis ofmany prevalent sleep disorders. Sleep staging, as defined by theAmericanAcademy
of SleepMedicinemanual (Troester et al 2023), is the process of classifying 30 s segments of sleep, known as
epochs, as belonging to one offive distinct sleep stages: wake (W), rapid eyemovement (REM), or non-REM
(NREM) stage 1–3. The resulting visualization of the sequence of sleep stages is called a hypnogram. Following
the AASMmanual, gold-standard sleep staging is carried out by a certified technician after visual analysis of at
least the following signals: three scalp electroencephalography (EEG) electrodes, two electro-oculography
(EOG) electrodes, and two chin electromyography (EMG) electrodes.Measuring all these signals is costly and
causes subject discomfort. For example, the EEG electrodes have to be placed on the scalp above the hairline.
Moreover, human inter-rater agreement is limited in this task, averaging around 82.6% (Rosenberg andVan
Hout 2013). The need for the full EEG/EOG/EMGmontage in the context of sleep staging has recently been
called into question (Lambert and Peter-Derex 2023), as only a subset of the EEG/EOG/EMG signals or even
surrogate signalsmight be sufficient for this task.
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Automatic sleep stage scoring has beenwidely researched as an alternative. Unlike human technicians, these
automatic scoring algorithms aremuchmoreflexible in terms of their input signals and do not require the full
EEG/EOG/EMGmontage. For example, automatic staging using only EEG electrodes already yields
performance on parwith the human inter-rater agreement (Phan andMikkelsen 2022). Alternatively, surrogate
measurements can also be leveraged, such as instantaneous heart rate, bodymovement, respiration, andmany
more (Bakker et al 2021, Imtiaz 2021, Fonseca et al 2023, Zhai et al 2023). However, these surrogate trackers do
not yet reach the same performance as the human inter-rater agreement.Moreover, they typically performonly
4-stage classification,merging theN1 andN2 into a combinedN1/N2 ‘light sleep’ stage.

Automatic scoringmethods can not only output the ‘hard’ hypnogrambut also a hypnodensity
graph (Stephansen et al 2018). The hypnodensity graph is a visual representation of the probability assigned to
each sleep stage by an automatic scoring algorithm, instead of only themost likely sleep stage used to create the
‘hard’hypnogram.One can interpret the hypnodensity graph as the sleep stage uncertainty or ambiguity of the
method (vanGorp et al 2022). The hypnodensity concept has gainedmuch attention recently, as it has been
shown tomatchwell with the label distribution of a human panel and potentially carriesmore clinically relevant
information than the hypnogram (Stephansen et al 2018, Bakker et al 2022, Anderer et al 2023,Huijben et al
2023).

As amiddle ground between EEGand surrogate sleep staging, single-channel EOG staging has been
proposed in the literature. EOG is advantageouswhen compared to EEG as it ismeasured below the hairline, can
be self-applied (Virkkala et al 2008), and can even bemeasuredwith dry electrodes embedded in a sleepmask
(Liang et al 2015,Hsieh et al 2021). At the same time, some amount of desirable EEG interference gets coupled
into the EOG signal. Automatic sleep staging algorithms can pick up on and exploit this EEG interference to
further enhance their performance (Zhu et al 2023). This is in contrast to theAASM rules for human scorers,
where the EOG is typically used to identify rapid and slow eyemovements, and the EEG interference is typically
undesirably.Many examples of sleep staging algorithms based solely on EOGcan be found in the literature
(Virkkala et al 2007, 2008, Kuo et al 2014, Liang et al 2015,Olesen et al 2016, Rahman et al 2018, Fan et al 2021,
Hsieh et al 2021, Zhu et al 2023). However, the aforementioned studies almost exclusively focus on small cohorts
of healthy subjects. Zhu et al (2023) recently showed that 5-stage classificationwith the EOG is possible for
subjects with a variety of sleep disorders, but they only used a limited dataset of 26 subjects.

We here implement a novel single-channel EOG staging algorithmusing state-of-the-art techniques.
Following recent trends in deep learning (Song et al 2021, Karras et al 2022), we leveraged a network based on
transformers (Vaswani et al 2017) embedded in aU-Net backbone (Ronneberger et al 2015). TheU-Net is a
convolutional neural network that has shown strong results in a variety ofmedical segmentation tasks due to its
use of amultiscale architecture with skip connections. Its limited field of view is expanded to include the entire
night using transformers. The resulting architecture can learn to exploit temporal relations at arbitrarily large
time scales.

In thismanuscript, we for thefirst time perform single-lead EOG staging on a relatively large clinical
population from the SOMNIA (Sleep andOSAMonitoringwithNon-Invasive Applications) dataset (vanGilst
et al 2019). In total, 774 recordings were used, whichwere split into 574 train, 100 validation, and 100 hold-out
test recordings.We included subjects with a large variety of sleep disorders, including insomnia, sleep-
disordered breathing, hypersomnolence, circadian rhythmdisorders, parasomnias, andmovement disorders.

2.Methods

2.1.Dataset
Wemade use of recordings from the SOMNIAdataset gathered at the SleepMedicine Center Kempenhaeghe
from subjects with a large variety of sleep disorders (vanGilst et al 2019).We included recordings from subjects
who underwent a full polysomnography (PSG) between 2017-01-01 and 2021-02-17. The inclusion criteria
were: at least 18 years old, presence of the full PSG (which included EOG), and the simultaneousmeasurement of
wrist-worn photoplethysmography (PPG) and actigraphy for future analysis.We excluded recordings with
interventions, such asCPAPusage.

In total, 774 overnight recordings were included from769 subjects, asfive subjects underwent twonights of
PSG. Each subject underwent an overnight diagnostic sleep study at the SleepMedicine Center Kempenhaeghe
as part of standard clinical care. During the night, a full polysomnography (PSG)was recorded and subsequently
manually scored following the AASMguidelines. The bio-electric potentials of EEG, EOG, and EMGwere
recorded using Ag/AgCl surface electrodes fromMFI B.V. (theNetherlands). These signals were then amplified
and recorded using aGrael PSG system fromCompumedics (USA). Formore information about the entire
measurement setup, please refer to the original protocol publication (vanGilst et al 2019).
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Sleep disorder diagnosis was established by a physician following the international classification of sleep
disorders, third edition (AmericanAcademy of SleepMedicine 2023).Wemerged the different sleep disorders
into 8 categories, including an ‘other’ category, which includes sleep disorders occurring in less than 10
participants in this dataset, for example ‘sleep-related headache’, and a ‘none’ class inwhich the primary
diagnosis is not a sleep-related disorder. Note that 41%of subjects hadmore than one sleep disorder present,
which is unsurprising since the SleepMedicine Center Kempenhaeghe is a tertiary sleep clinic.

The dataset was split into 574 train, 100 validation, and 100 hold-out test recordings. The split wasmade
based on the date of the recording, all recordings before 2019-06-04were included in the train set, the recordings
made between 2019-06-04 and 2020-02-06were included in the validation set, and the newest recordings were
used as the hold-out test set. All of the 100 recordings in the hold-out test set came fromunique subjects which
were not included in either the train or validation sets. See table 1 for the distribution of sleep disorders over the
different sets.

2.2. EOGderivations
From the full PSG, we selected the two EOG channels ‘E1-M2’ and ‘E2-M2’, which correspond to the left and
right EOG, respectively. Following theAASM specifications, the ‘E1’ electrode is placed 1 cm to the left and 1 cm
below the left outer canthus, and the ‘E2’ electrode is placed 1 cm to the right and 1 cmabove the right outer
canthus. The ‘M2’ electrode is placed on the rightmastoid, behind the ear. A visual overview is given infigure 1.
Because the EOGderivations are not placed symmetrically, we separately evaluated the usage of the left and right
EOGderivation in the hold-out test set.

2.3. Preprocessing
Wefirst resampled the EOG from512 to 128 Hz. Furthermore, we performed band-pass filtering between 0.3
and 49 Hz using fifth-order Butterworth filters applied both in the forward and backward directions, to ensure a

Figure 1.The left ‘E1’ and right ‘E2’EOGderivations as specified by theAASMmanual and used in this study. Note that both
derivations are referenced to the same electrode placed on the rightmastoid behind the ear called ‘M2’.We also show an example of
what the signals look like for an epoch ofN3 sleep.Here, delta waves caused by desirable EEG contamination in the EOG signal are
clearly visible.

Table 1. Sleep disorders present in different splits of the dataset.a

Diagnosis Train Val. Test All

Insomnia 233 40 32 305

Sleep-disordered breathing 344 53 49 446

Hypersomnolence 42 8 11 61

Circadian disorder 13 5 6 24

Parasomnia 74 25 37 136

Movement disorder 104 25 26 155

Other 8 1 2 11

None 17 3 2 22

Number of recordings 574 100 100 774

a Many subjects hadmultiple primary diagnoses of sleep disorders,

thus the columns do not necessarily add up to the total number of

recordings.
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zero-phase filtering operation. Additionally, we applied log-normalization per recording to both the EOG
signals following (Stephansen et al 2018):

⎜ ⎟
⎛
⎝

⎞
⎠

( ˜) · ∣ ˜∣
( ˜)

( )= +x x
x

xP
sign log 1 , 1

95

where x̃ corresponds to an EOG signal of a recording before rescaling, x is the rescaled EOG signal, and ( ˜)xP95 is
the 95thmagnitude percentile. This type of normalizationwas applied as it is robust against outliers in the data
due to the use of the 95thmagnitude percentile.Moreover, it pushes up very small values and pushes down very
large values due to the use of the logarithm. Lastly, we zero-padded all signals to a size 7× 28= 1792 epochs for
implementation purposes. This zero-paddingwas removed after inference, and before performance evaluation.

2.4. Network architecture
Toperform accurate automatic sleep staging using single-channel EOG,we employed transformers (Vaswani
et al 2017) embedded in aU-Net backbone (Ronneberger et al 2015). Specifically, we adapted theDDPM++
architecture fromSong et al (2021), but with a few changes tomake itmore suited to the EOG staging task.
Firstly, theDDPM++networkwas originally proposed for images and as such, itmakes use of 2D convolutions.
We changed them to 1D convolutions in order toworkwith time series. Secondly, we added positional encoding
to all the self-attention layers, creating transformer-encoder architectures, which are able to learn arbitrary-
distance temporal relations within and between the EOG and hypnogram. Thirdly, sincewe apply the
architecture as a discriminative neural network andnot in its originally proposed setting of diffusionmodeling,
we did notmake use of ‘noise embedding’. Lastly, wemade the ‘U’ asymmetrical by adding an epoch encoder,
since the EOGwas ofmuch higher dimension than the output hypnogram. See figure 2 for an overview of the
network architecture. Figure 2 shows a visual overview of the network architecture, which consists of four
distinct stages. Thefirst stage is where the EOG signal is processed by an epoch encoder to extract epoch-level
features. To do this, the input signal is compressed from a size of 1792 epochs× 30 s× 128 samples to 1792
epochs× 16 features. Further details regarding the epoch encoder can be found in appendix A.1.

After the epoch encoding, the output is fed through aU-Net, which is composed of an encoder, bottleneck,
and decoder. TheU-Net has skip connections added between the encoder and decoder to overcome vanishing
gradient problems and allow the network to learn feature embeddings at different time scales in the hypnogram.
At the end of the network, a softmax activation function is applied to obtain the probability of each sleep stage at
each epoch, which can be interpreted as the hypnodensity.More information about theU-Net encoder,
bottleneck, and decoder can be found in appendices A.2, A.3, andA.4, respectively.

The four stages of the network consist of standard building blocks such as convolutional layers, up- and
down-sampling layers, dropout layers, and group normalization layers (WuandHe 2018). Additionally, ResNet
and transformer layers are used, which are composed of smaller simpler layers, as shown infigure 2. For an in-
depth description of the ResNet and transformer layers, please refer to appendix A.5 and appendix A.6,
respectively.

Figure 2.Architecture of the proposed EOG staging network. The kernel size of each convolution is listed between brackets.
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2.5. Training
The neural networkwas trained using both the left and right EOG signal derivations. This was achieved by
loading each training recording twice in a dataset iteration during training, once using the left EOGderivation
and once using the right EOGderivation. The networkwas trained using the Adamoptimizer (Kingma and
Ba 2015)with a learning rate of 10−5. Training continued until convergence, whichwasmonitored using the
validation set. Convergence was considered to be reachedwhen the validation loss did not improve for 50
consecutive dataset iterations.

2.6. Testing
After training, we employed the network on the 100 hold-out test recordings using both the left and right EOG
derivations. The output hypnograms obtained for each EOGderivationwere compared to that of the gold-
standard human scoring. For each recording and EOGderivation separately, we computed agreementmetrics
such as accuracy, Cohen’s kappa, and per-class F1 scores.We then calculated both themedian and the
interquartile range across the 100 test subjects for eachmetric. Testingwas performed in this way in order to
ensure that each recording contributed equally, instead of their contribution being based on the total recording
time. Furthermore, themedianwas taken since themetrics were not normally distributed. Additionally, this way
of testing allowed for an analysis of eachmetric per sleep disorder. A confusionmatrix was also calculated
separately for each EOGderivation based on all aggregated epochs from all hold-out test recordings.

3. Results

3.1.Metrics
The resultingmedian and interquartile range permetric and diagnosis across the recordings in the hold-out test
set are shown in tables 2 and 3 for the network using the left and the right EOGderivation, respectively. In order
to aidwith comparison to the literature, themean and standard deviation results are shown in appendix B. As
can be seen from tables 2 and 3, the network achieves a slightly better average performance using the right EOG
compared to using the left EOG.Using aWilcoxon signed-rank test to compare the kappa values over the 100
test recordings, this difference was found to be statistically significant (p= 0.0014 and test statistic= 1596).

Additionally, we testedwithin for EOGderivationwhether therewere significant differences in terms of
kappa between subjects with a certain sleep-disorder and thosewithout that sleep disorder. These tests were
performed using theMann-WhitneyU rank test. Using a significance level of p= 0.05, no significant differences
were found.

3.2.Qualitative examples
Aqualitative analysis in terms of the predicted hypnodensities and hypnogramswas also performed. To that end,
we plot the network predictions for themost ‘typical’ recordings, whichwere defined as those recordings where
the network achieved itsmedian performance in terms of Cohen’s kappa for an EOGderivation. Figure 3 shows
themost typical recording for the left EOGderivation, where it achieved a kappa of 0.782, and figure 4 shows the
most typical recording for the right EOGderivation, with a kappa of 0.796. In bothfigures, we also show the
output using the other EOGderivation. Additionally, appendix C shows qualitative results for random
recordings for each diagnosis.

From figures 3 and 4, it can be observed that the predicted hypnograms line up accurately with the ground
truth.However, it can be observed that large number ofN1 epochs aremissed by the network. The difficulty of
scoringN1 epochs can also be observed by analyzing the hypnodensities, especially those infigure 4.Uncertainty
between thewake andN1 class can be observed at 5 and 9 h into the night.

3.3. Confusionmatrices
The confusionmatrices calculated over all epochs are shown infigure 5.Overall, therewere very fewwrongly
predicted classes. Only theN1-stage sensitivity was low, withmost of the confusion being towards theN2 class.
Additionally, therewas some confusionwith respect to scoring a ground-truthN3 epoch asN2.

4.Discussion

Modern sleepmedicine demands accurate and inexpensive sleep staging systems that can reliably be trusted
regardless of any underlying sleep condition. Automatic sleep staging using single-channel EOGpromises to be a
suitable solution to this challenge.However,most EOG staging algorithms described in literature have almost
exclusively been tested on healthy subjects, or on small cohorts of patients with sleep disorders.We for the first
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Table 2.Results for the network using the left EOGderivation, we show themedian*/the interquartile range across the recordings.

F1 scores

Diagnosis #Test recordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 86.7%/7.4% 0.812/0.103 0.906/0.093 0.553/0.087 0.891/0.078 0.850/0.125 0.895/0.095

Sleep-disordered breathing 49 84.3%/7.9% 0.771/0.102 0.888/0.099 0.566/0.132 0.865/0.075 0.849/0.127 0.865/0.072

Hypersomnolence 11 85.8%/4.4% 0.781/0.062 0.898/0.075 0.598/0.195 0.901/0.063 0.856/0.104 0.867/0.082

Circadian disorder 6 85.6%/4.3% 0.782/0.059 0.852/0.095 0.514/0.110 0.908/0.048 0.904/0.091 0.860/0.048

Parasomnia 37 84.7%/9.1% 0.768/0.106 0.874/0.133 0.559/0.137 0.889/0.075 0.842/0.128 0.872/0.053

Movement disorder 26 85.3%/9.4% 0.800/0.130 0.913/0.080 0.560/0.170 0.874/0.071 0.843/0.080 0.895/0.075

Other 2 89.2%/4.5% 0.844/0.051 0.918/0.057 0.535/0.070 0.887/0.023 0.938/0.009 0.903/0.032

None 2 88.2%/1.8% 0.822/0.032 0.876/0.044 0.610/0.086 0.908/0.006 0.945/0.010 0.841/0.021

All 100 85.0%/8.0% 0.781/0.107 0.894/0.109 0.548/0.136 0.885/0.074 0.850/0.120 0.871/0.084
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Table 3.Results for the network using the right EOGderivation, we show themediana/the interquartile range across the recordings.

F1 scores

Diagnosis #Test recordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 86.1%/7.1% 0.812/0.095 0.918/0.091 0.583/0.113 0.892/0.069 0.871/0.106 0.901/0.074

Sleep-disordered breathing 49 84.9%/5.8% 0.795/0.085 0.897/0.079 0.571/0.101 0.878/0.058 0.869/0.120 0.871/0.094

Hypersomnolence 11 84.5%/7.6% 0.766/0.114 0.891/0.054 0.565/0.144 0.888/0.072 0.814/0.128 0.839/0.077

Circadian disorder 6 85.6%/5.7% 0.788/0.073 0.877/0.073 0.513/0.051 0.914/0.040 0.920/0.067 0.849/0.066

Parasomnia 37 84.5%/7.9% 0.788/0.121 0.896/0.123 0.532/0.118 0.886/0.081 0.863/0.150 0.877/0.070

Movement disorder 26 84.7%/8.5% 0.783/0.098 0.912/0.081 0.569/0.124 0.872/0.060 0.860/0.105 0.881/0.074

Other 2 89.1%/4.3% 0.844/0.048 0.910/0.064 0.526/0.074 0.897/0.014 0.958/0.017 0.853/0.018

None 2 88.5%/1.8% 0.828/0.033 0.888/0.032 0.614/0.107 0.910/0.002 0.950/0.013 0.832/0.028

All 100 85.2%/6.9% 0.796/0.103 0.902/0.107 0.551/0.123 0.882/0.064 0.867/0.129 0.874/0.097

a Themedian for an even number of recordingswas defined as the average of themiddle two values.
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timewe show that automatic sleep staging using single-channel EOG can be done reliably for subjects with a
variety of sleep disorders in a relatively large cohort.

4.1. Inter-rater agreement
Toput our sleep staging results into context, we can compare it to the human inter-rater agreement which serves
as an upper limit on performance (vanGorp et al 2022). The human inter-rater agreement has beenwidely
studied in the context of the AASM scoring rules, with Rosenberg andVanHout (2013) conducting an especially
large study comparing the scoring behavior of over 2500 scorers.When comparing a single scorer against a
group consensus, Rosenberg andVanHout (2013) found an average inter-rater agreement of 82.6%. Splitting
this agreement into the different stages they found an 84.1% agreement forWake, 63.0% forN1, 85.2% forN2,
67.4% forN3, and a 90.5% agreement for REM.

The sleep technologists at the SOMNIAdata collection site, SleepMedicine Center Kempenhaeghe, have
shown a very high inter-rater agreement, with around 86%agreement on both the AASM interrater agreement
program (Rosenberg andVanHout 2013) and internal institutional inter-rater agreement assessment.
Additionally, a second scoring by another technician of the same institutionwas available for 14 recordings in
the dataset used in the present study. This allowed us to estimate the inter-rater agreement for this subset, which
was in average 86.1%. Separately evaluating agreement for different stages results yielded a 93.1% agreement for
Wake, 64.8% forN1, 85.6% forN2, 88.1% forN3, and 89.1% for REM.Comparing these results with the
confusionmatrices from figure 5, we can see that our EOG system reaches similar levels of performance.

While ourN1 performance is the lowest out of all the classes, 53.5% and 53.3%, this is also the case for the
human inter-rater agreement, whichwas found to be only 63.0% and 64.8%byRosenberg andVanHout (2013)
and internally at Kempenhaeghe, respectively. This underlines the difficulty of accurately detecting theN1 stage,
even for human scorers, and shows that ourN1 classification performance is actually close to the expected upper
limit, defined by inter-rater human agreement. The high degree of uncertainty about theN1 class is also reflected
in the hypnodensity graphs, see for example 4.Nikkonen et al (2023) also point out the low agreement of theN1

Figure 3.Qualitative results for the recordingwhere the left EOGderivation achievedmedian performance in terms of Cohen’s kappa
(0.782). This subject had a parasomnia diagnosis.

Figure 4.Qualitative results for the recordingwhere the right EOGderivation achievedmedian performance in terms of Cohen’s
kappa (0.796). This subject had an ‘other’ diagnosis.
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stage between human scorers and highlight different factors that contribute it. Among these are: stage
transitions, in particular N1 toN2, the low amount ofN1 sleep in general, and the variety in alpha frequencies
between individuals, whichmay even not be present at all.

Most strikingly, ourN3 classification performance is substantially higher than the inter-rater agreement
found byRosenberg andVanHout (2013), 76.3% and 78.4% versus 67.4%. This is similar to the (human) inter-
rater agreement for theN3 stage in our dataset, which is 88.1%. This can be explained by the fact that Rosenberg
andVanHout (2013) looked at the differences between scorers coming from a large variety of backgrounds and
institutions, while the technicians from the SOMNIA set all came from the same clinic. This results in lower
ambiguity about the scoring ofN3 for a sleep staging algorithm trainedwith, and evaluated on data from the
same institution (vanGorp et al 2022).

4.2. EOG-enabled sleep staging literature
Automatic sleep staging based solely on the EOGdates back to 2007 (Virkkala et al 2007). Classicalmachine
learningmethods based on feature extraction and classification algorithms such as random forest and support
vectormachines were explored first (Virkkala et al 2007, 2008, Kuo et al 2014, Liang et al 2015,Olesen et al 2016,
Rahman et al 2018).More recently, end-to-end learning based on deep neural networks has also been described
(Fan et al 2021,Hsieh et al 2021, Zhu et al 2023). The reported performancemetrics for all of thesemethods have
been promising, with accuracies ranging between 70.8% and 91.7% andCohen’s kappa ranging between 0.60
and 0.806.However, almost all algorithms have only been validated on datasets of healthy participants and of
limited size, with the largest set used byVirkkala et al numbering 263 subjects. On the other hand, only Zhu et al
(2023) did a study on subjects with amix of sleep disorders, butwith a limited set of only 26 participants.

Besides the standard PSG, customdevices to record the EOGhave also been proposed in the literature. As
stated in the introduction, the EOGcan for example bemeasuredwith dry electrodes embedded in a sleepmask
(Liang et al 2015,Hsieh et al 2021). On the other hand, portable frontal EEG solutions could also be considered,
as the frontal EEG sharesmany similarities with the EOG. This type of solution dates back even earlier than
single channel EOG sleep staging, with devices such asQUISI (Ehlert et al 1998) andBiosomnia (Schweitzer et al
2004).Modern iterations on this concept can also be found in the literature (Finan et al 2016, Bresch et al 2018).

To allow forwidespread adoption in the clinic, automatic staging based on EOGhas to achieve reliable
performance not only on healthy subjects but especially on those subjects with (possiblymultiple) sleep
disorders. A particular strength of this study is that we show that EOG staging is possible by evaluating our
method on 100 hold-out test recordings from subjects with a large variety of disorders. Themodel is robust to
the presence of different sleep disorders, exhibiting no significant differences between these.

4.3. Effect of the EOGelectrode location
Performancewith the right EOGwas significantly higher thanwith the left EOG. This effectmight be explained
by the fact that the right EOG electrode is placed closer to the top of the scalp in comparison to the left EOG, see

Figure 5.Confusionmatrices for the networkwith the total number of epochs listed between brackets. The EOGderivations used are
(a) left EOG, (b) right EOG.
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figure 1. Because of this,more desired EEG interference could get coupled into the right EOG, thereby enabling
it to performmore accurate sleep staging. Additional research is however needed to establishwhat the effect of
EOGelectrode placement is on the performance of automatic sleep staging algorithms. This is particularly
important since, for instance, the AASMmanual describes both a recommended placement of EOG electrodes
—whichwe used—but also an ‘acceptable’ placement (Troester et al 2023). Following the acceptable
recommendation, both electrodes are placed 1 cmbelow the outer canthus and referenced to the Fpz’ electrode,
possibly resulting in different signal characteristics. The proposed algorithm could be trained to adapt to these
differences through transfer learning, a process that has been proven toworkwell for differences in frontal EEG
electrode placement and acquisition (van der Aar et al 2024).

4.4.Model architecture
The architecture of our sleep stagingmodel is based on highly expressivemodels found in the score-based
diffusion literature (Song et al 2021, Karras et al 2022). Thesemodels rely on aU-Net backbone, whichwas
originally proposed formedical image segmentation (Ronneberger et al 2015), and has been appliedwith success
to the sleep staging task (Perslev et al 2021, vanGorp et al 2023). Additionally, transformer layers were added, to
allow the network to learn associations at arbitrary time scales. This contrasts with convolutional and recurrent
neural networks, which have a strong architectural bias towards learning relationships at smaller time scales and
between neighboring samples. The ability to exploit relationships at long time scales can be very useful in the
context of sleep staging, for example in the application of the REMcontinuation rule, which states that REM
should be continued to score even in the absence of rapid eyemovements under certain conditions such as low
muscle tone and the absence of k-complexes and arousals (Troester et al 2023).

Other sleep staging algorithms employing transformers have also been proposed in the literature. For
example, Phan et al (2022) proposed SleepTransformer which uses single-channel EEGdata in a convolution-
and recurrent neural network-free architecture. The employed sequence length in SleepTransformer is however
only 21 epochs, which contrasts with ourmodel, where the entire overnight recording is used.More comparable
with ourmodel, sleep staging algorithms that combine attention or transformer layers with convolutional layers
have been previously described (Qu et al 2020, Zhu et al 2020, Eldele et al 2021).

To evaluate some of the neural network layers used, a post-hoc ablation studywas performed, which can be
found in appendixD. Such post-hoc analyses comewith the caveat that if one tries tofind the parameter settings
with highest test set performance, test set leakagemay occur (Kapoor andNarayanan 2023). Still, from the
ablation experiments it can be concluded that the skip connections, group normalization layers, and dropout
layers are essential for good sleep staging performance in thismodel. Ablating either the largeU-Net
convolutions or transformer layers did not lead to a significant change in sleep staging performance, indicating
that both are valid strategies for learning associations between epochs in their own right.

4.5. Limitations
There are some limitations to this studyworth remarking. Firstly, training and testing of the networkwere done
with recordings obtained and scored at the same institution. This could lead to sampling biases in terms of
confounders such as recording characteristics,medication use, and patient demographics. Futurework should
investigate the effects of dataset distribution shift on the final performance of the network, as differences in
measurement setup, scoring behavior, and population characteristics between different institutions can impact
performance. However, it is important to note that the dataset used in this study comes from a third-line sleep
clinic and represents one of themore difficult populations to perform sleep staging on.

Secondly, no extensive hyper-parameter searchwas performed, for example on kernel size or channel depth.
Since the performance of the networkwas already on parwith the inter-rater agreement, we hypothesize that
hyper-parameter tuningwould not necessarily lead to significant improvements, at least on this dataset.

Thirdly, our study used EOG channel derivations from a full PSG, as applied bymedical specialists. To lower
healthcare costs and enable ambulatory sleep studies, it would be interesting to study the performance of our
network in the context of self-applied EOG electrodes (Virkkala et al 2008) or amaskwith dry electrodes (Liang
et al 2015,Hsieh et al 2021). Transfer learning could also be used in this case to overcome eventual changes in
signal characteristics (van der Aar et al 2024).

Fourthly, using a single-channel EOGmeans that certainmeasurements can bemissed. For example, if the
EOGelectrode detaches during the night, there is no backup channel available.Moreover, for certain specific
disorders, single-channel EOGmight not be sufficient, for example in the case of sleep-related epilepsy, where
the concurrentmeasurement of EEGwould be beneficial.

Lastly, single-channel EOGmay not be the end-all solution, as single-channel EEGor other surrogate
measures can also be leveraged by automatic sleep staging algorithms. Especially the signalmeasured by a very
frontal EEG electrodewould be similar to the current setup. The EOG is however already part of the standard
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AASMPSG setup, while pre-frontal EEG electrodes such as Fp1 and Fp2 are not.When choosing ameasurement
setup for sleep staging, a trade-off between signal quality, ease ofmeasurement, cost, and subject (dis)comfort
should bemade, depending on the subject and suspected sleep disorder.

5. Conclusion

In summary,wedeveloped an automatic sleep staging algorithm for single-channel EOG leveraging transformers
embedded in aU-Netbackbone.Weused a relatively large dataset of 774 recordingswith a variety of sleepdisorders,
split into 574 train, 100validation, and100hold-out test recordings.Weverified that theperformanceof ournetwork
was onparwith thehuman inter-rater agreement. Furthermore,we foundno significant differences inperformance
between subjectswithdifferent sleepdisorders.Themainfindings of this study are as follows. Firstly, the proposed
architecture and trainingmechanismare effective inEOG-based sleep staging. Secondly, the performanceof
automatic sleep stagingbased solely ona single channel EOGcomes very close to thehuman inter-rater agreement.
Thirdly, the differences in locationbetween the left and right EOGelectrodes, as recommendedbyAASM, affect the
sleep staging performance. Lastly, theuse of single-channel EOG in automatic sleep staginghas shown similar
performance regardless of theunderlying of sleepdisorders. These results pave theway for the adoptionof automatic
sleep stagingusing single-channel EOG in clinical settingswhere subjectswith complexdisorders canbe encountered.
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AppendixA.Details regarding the network architecture

In this appendix, we elaborate on the architectural details of the neural network, as shown infigure A1.
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A.1. Epoch encoder
Because the EOG signals and the hypnograms had different sampling frequencies (128 Hz versus 1/30 Hz), we
first needed to downsample the EOGbeforewe could use theU-Net structure of ourmodel. To that end, we
employed a context encoder, which downsampled the EOG signal from · · ´1792 30 128 1 to ´1792 16, i.e. a context
encoding of length number of epochs with 16 channels.

The context encoderworked as follows. First, a convolutionof kernel size 1 expanded thenumber of channels
from1 to16.Then, a series of twoResNetswas employed to extractmeaningful features from theEOGsignal (seeA.5
for furtherdetails regarding theResNet). This patternwas repeated 5 timeswith 4downsamplingoperations between
the 5blocks. Eachdownsamplingoperationused akernel of [1,1,1,1] and a stride of 4, to effectively downsample the
inputby a factor of 4.At the endof the epoch encoder, another convolutionof kernel and stride 15wasused, thus
compressing theEOGsignal to a featuremapof size ´1792 16 whichwasused as input to theU-Net encoder.

A.2. U-Net encoder
TheU-Net encoderfirst employed a convolutionof kernel size 1 to increase the channel size from16 to 32.Then, a
Transformer layer togetherwith twoResNetblockswas employed (seeA.6 for furtherdetails regarding the
Transformer layer). After eachResNet block, a skip connectionwas added to theU-Net decoder at the same
resolution.This patternof a transformerwith twoResNetswas repeated4 timeswith 3downsamplingoperations in
between.Again, a kernel of [1,1,1,1] and a stride of 4wasused in thedownsamplingoperations.Note that in the
originalDDPM++ implementation (Song et al2021), an attention layerwas added after eachResNet in the encoder.
However, to bringdown the computational complexity of ourmethod and tomake the encoder symmetricwith the
decoder,we employedonly a single transformer layer at the start of each resolution level in theU-Net encoder.

A.3. Bottleneck
In the bottleneck, the featuremapwas of its smallest size, namely ´28 16. Here, one transformer layer
sandwiched between twoResNet blocks was used to learn the highest-level features of the hypnogram.

A.4. U-Net decoder
The decoder followed amirrored structure to the encoder. The skip connections from the corresponding
resolution levels were concatenated to the inputs of eachResNet block. These connections allowed the feature
maps to skip the downward path of the ‘U’ and enabled themodel to learn both high-and-low level features of
the hypnogram. The upsampling operation of the decoder was implemented using a transposed convolution
with the samefilter of [1,1,1,1].

As afinal step toward creating ahypnogram, theU-Net decoder employed a convolutionof kernel size 1 tomap
the input to 5 channels,where each channel corresponded tooneof thefive sleeps stages. A softmax activation
functionwas thenused tomapeach channel to a class probability. This creates a ‘hypnodensity’, a soft versionof the
hypnogramwhere each epoch is partially associatedwith each sleep stage according to someprobability (Stephansen
et al2018). If instead a ‘hard’hypnogram isdesired, the argmaxof thehypnodensity canbe taken.

A.5. ResNet
TheResNet, orResidualNetwork,was repeated throughout the architecture. It consists of twogroupnormalization
layers and twoconvolutions in analternatingpattern.Groupnormalization, asdescribedbyWuandHe (2018), applies
a learnednormalizationacross groupsof channels, enabling faster training. Inour case, eachgroupconsistedof 4
channels. The1Dconvolutionsof theResNet eachusedakernel of size 7 andzero-padding set to ‘same’. Each
convolutionwas followedbySiLU (SigmoidLinearUnit) activation (Hendrycks andGimpel 2016). Additionally, a
spatial dropout layerwas addedbefore the secondconvolution,whichdropsout entire channels during trainingwitha
probability of 10%.Spatial dropout is abetter regularizer for convolutionalneuralnetworks, sinceneighbouring
samples areoftenhighly correlated (Tompson et al2015). Finally, a residual connectionwas added tohelp combat
vanishing gradientproblems.To limit themagnitudeof the signals, scalingwith a factor of =skip scale 0.5 was
applied.

A.6. Transformer layer
The original transformer architecture is a sequence-to-sequencemodel composed of both an encoder and a
decoder (Vaswani et al 2017).Where each element consists of a scaled dot-product attention layer and an
element-wise feed-forward network. Additionally, positional encoding is added at the start of the encoding and
decoding stacks.We adapt the transformer architecture to be suited for our network. Firstly, we did not use the
decoder, since it is used to generate new sequence in an auto-regressivemanner. Secondly, sincewe embedded
the layers within a larger convolutional neural network, therewas no need for separate element-wise feed-
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forward networks. lastly, because the attention layers operated at different time scales, we added positional
encoding to each of them.

The positional encodingwas implemented using sine-cosine embedding. In this scheme, a positional
encodingmatrix is added element-wise to the input sequence of the transformer. To that end, the input
sequence S and positional encodingmatrixP should be of the same size: Î ´S P, L C , where L is the length of
the input sequence andC is the number of channels. The positional encodingmatrix is given by:
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with lä [0, 1,K, L− 1] and c ä [0, 1,K,C− 1]. This type of encoding enables the transformer to exploit
information about both the absolute and relative positions of samples along the night.

Each of the transformer layers used scaled dot-product self-attention.While the attentionmechanism can be
implemented usingmultiple attention-heads for added complexity, we here onlymade use of a single head. In
scaled dot-product self-attention, three linear projections are applied to transform the sequence to a query, key,
and valuematrix:

( )= = =Q SW K SW V SW, , , A.2Q K V

where Î ´W W W, ,Q K V
C C are learned linear projectionweights and Î ´Q K V, , L C are the query, key, and

valuematrices, respectively. These linear projections can be implemented efficiently by a single convolutional
layer of kernel size 1 and output channel size of 3C, as its output can be split along the channel dimension into
the three separate components.

Following a database analogy, the queries are going to look formatching keys and propagate the associated
values to the output, where each individual query, key, and value are found along the rows of their respective
matrices. This process is defined by the scaled dot-product self-attentionmechanism:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )=
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QK

VAttention , , softmax , A.3
T

whereKT denotes the transpose of the keymatrix.Moreover, Î ´QKT L L denotes the attentionmap. To ensure
that themagnitudes in the attentionmap do not grow too large, it is scaled downby a factor of C1 .
Additionally, a softmax activation is applied along the rows of the attentionmap in order to ensure that the
attention sums to 1.

After the scaled dot-product attention layer, another linear projection using a 1D convolutionwas applied.
Similar to the ResNet, a residual connectionwas appliedwith a scaling of =skip scale 0.5 .

Appendix B. Additional quantitative results per diagnosis

In this appendix, we provide additional quantitative results in terms of themean and standard deviation across
the recordings, see tables B1 andB2.

Figure A1.Architecture of the proposed EOG staging network. The kernel size of each convolution is listed between brackets.
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Table B1.Results for the network using the left EOGderivation, we show themean ± the standard deviation across the recordings.

F1 scores

Diagnosis #Test recordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 83.7% ± 9.8% 0.767 ± 0.136 0.888 ± 0.081 0.550 ± 0.126 0.843 ± 0.140 0.764 ± 0.256 0.834 ± 0.195

Sleep-disordered breathing 49 83.1% ± 6.5% 0.763 ± 0.090 0.872 ± 0.098 0.546 ± 0.117 0.858 ± 0.065 0.788 ± 0.218 0.828 ± 0.156

Hypersomnolence 11 83.6% ± 6.4% 0.764 ± 0.085 0.869 ± 0.103 0.515 ± 0.169 0.881 ± 0.055 0.809 ± 0.128 0.855 ± 0.067

Circadian disorder 6 85.5% ± 3.6% 0.789 ± 0.051 0.864 ± 0.074 0.546 ± 0.079 0.894 ± 0.037 0.834 ± 0.182 0.844 ± 0.051

Parasomnia 37 82.8% ± 7.6% 0.757 ± 0.106 0.858 ± 0.110 0.546 ± 0.118 0.847 ± 0.096 0.760 ± 0.248 0.816 ± 0.189

Movement disorder 26 84.0% ± 6.0% 0.777 ± 0.081 0.888 ± 0.092 0.539 ± 0.135 0.850 ± 0.076 0.801 ± 0.169 0.877 ± 0.072

Other 2 89.2% ± 6.4% 0.844 ± 0.072 0.918 ± 0.081 0.535 ± 0.099 0.887 ± 0.032 0.938 ± 0.013 0.903 ± 0.045

None 2 88.2% ± 2.5% 0.822 ± 0.045 0.876 ± 0.063 0.610 ± 0.121 0.908 ± 0.008 0.945 ± 0.015 0.841 ± 0.030

All 100 83.4% ± 7.7% 0.763 ± 0.106 0.873 ± 0.093 0.538 ± 0.124 0.850 ± 0.101 0.800 ± 0.192 0.830 ± 0.165
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Table B2.Results for the network using the left EOGderivation, we show themean ± the standard deviation across the recordings.

F1 scores

Diagnosis #Test recordings Accuracy Cohen’s kappa Wake N1 N2 N3 REM

Insomnia 32 86.0% ± 5.0% 0.800 ± 0.068 0.904 ± 0.063 0.572 ± 0.094 0.872 ± 0.069 0.811 ± 0.213 0.865 ± 0.129

Sleep-disordered breathing 49 84.0% ± 6.1% 0.775 ± 0.085 0.881 ± 0.103 0.553 ± 0.113 0.868 ± 0.056 0.807 ± 0.207 0.820 ± 0.185

Hypersomnolence 11 82.7% ± 6.2% 0.752 ± 0.084 0.877 ± 0.085 0.507 ± 0.153 0.871 ± 0.059 0.785 ± 0.146 0.848 ± 0.061

Circadian disorder 6 86.1% ± 3.5% 0.797 ± 0.050 0.871 ± 0.071 0.537 ± 0.044 0.898 ± 0.042 0.838 ± 0.206 0.848 ± 0.055

Parasomnia 37 83.8% ± 7.2% 0.769 ± 0.102 0.867 ± 0.122 0.547 ± 0.114 0.855 ± 0.102 0.765 ± 0.255 0.808 ± 0.219

Movement disorder 26 84.7% ± 5.6% 0.786 ± 0.075 0.897 ± 0.083 0.543 ± 0.127 0.858 ± 0.075 0.816 ± 0.165 0.881 ± 0.058

Other 2 89.1% ± 6.1% 0.844 ± 0.068 0.910 ± 0.090 0.526 ± 0.104 0.897 ± 0.020 0.958 ± 0.024 0.853 ± 0.026

None 2 88.5% ± 2.5% 0.828 ± 0.046 0.888 ± 0.046 0.614 ± 0.151 0.910 ± 0.004 0.950 ± 0.018 0.832 ± 0.039

All 100 84.5% ± 6.0% 0.779 ± 0.083 0.884 ± 0.091 0.547 ± 0.110 0.862 ± 0.079 0.813 ± 0.187 0.837 ± 0.158
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AppendixC.Qualitative results per diagnosis

In this appendix, we provide additional qualitative results for a random recording from each diagnostic group,
see figures C1–C8.

FigureC2.Qualitative results for a random recording from a subject with a ‘sleep-disordered breathing’ diagnosis.

FigureC3.Qualitative results for a random recording from a subject with a ‘hypersomnolence’ diagnosis, note that this subject also
had a ‘sleep-disordered breathing’ diagnosis.

FigureC1.Qualitative results for a random recording from a subject with an ‘insomnia’ diagnosis.
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FigureC4.Qualitative results for a random recording from a subject with a ‘circadian disorder’ diagnosis, note that this subject also
had a ‘sleep-disordered breathing’ and a ‘parasomnia’ diagnosis.

FigureC5.Qualitative results for a random recording from a subject with a ‘parasomnia’ diagnosis.

FigureC6.Qualitative results for a random recording from a subject with a ‘movement disorder’ diagnosis.
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AppendixD. Ablation experiment

Apost-hoc ablation studywas performed to evaluate some of the neural network layers used. Five different
ablationswere performed and the resulting networkswere trained and evaluated in a similar way as the base
network proposed in themanuscript. The ablationswere as follows. Firstly, the group normalization layers were
ablated, as shown in figureD1. Secondly, the dropout layers were ablated, as shown infigureD2. Thirdly, all the
skip connectionwere ablated, as shown infigureD3. Fourthly, all transformer layers were ablated, as shown in
figureD4. Lastly, we ablated the convolutions in theU-net by setting their kernel sizes to ‘1’. This effectively
changes them to linear layers, without any ability to aggregate information between neighbouring epochs. This is
shown infigureD5.

The resulting test set performance in terms ofmedian and interquartile range is shown in tableD1.We tested
if the resultingmetrics were significantly different from the base performance usingWilcoxon signed-rank tests,
wit a significance value of p= 0.05.

From tableD1, it can be observed that the group normalization layers, dropout layers, and skip connections
are essential for the network to have good sleep staging performance. As the performancemetrics for these
ablations are significantly lower than those of the base network. Additionally, we can see that theU-Net, which is
responsible for aggregating information between neighbouring epochs, can retain its performance using either
only convolutions or only transformers. Both are valid strategies for enabling the network to learn associations
between epochs.

FigureC7.Qualitative results for a random recording from a subject with an ‘other’ diagnosis, note that this subject also had a ‘sleep-
disordered breathing’ diagnosis.

FigureC8.Qualitative results for a random recording from a subject with no primary sleep diagnosis.

18

Physiol.Meas. 45 (2024) 055007 HvanGorp et al



FigureD1.Architecture for ‘groupnorm’ ablation.

FigureD2.Architecture for ‘dropout’ ablation.

FigureD3.Architecture for ‘skip connection’ ablation.
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FigureD5.Architecture for ‘convolution’ ablation.

FigureD4.Architecture for ‘transformer’ ablation.

TableD1.Results for the different ablation experiments.We show themedian/the interquartile range across the recordings. If an ablation
result was significantly different from the base result, an asterisk is displayed.

Left EOG Right EOG

Ablation Accuracy Kappa Accuracy Kappa

Base 85.0%/8.0% 0.781/0.107 85.2%/6.9% 0.796/0.103

groupnorm 82.2%/9.9%* 0.745/0.126* 83.5%/10.0%* 0.759/0.136*

dropout 81.6%/7.2%* 0.738/0.097* 83.0%/6.9%* 0.754/0.088*

skip connections 70.8%/10.3%* 0.570/0.151* 71.5%/9.7%* 0.576/0.137*

transformer 84.3%/7.0% 0.776/0.101 84.9%/6.5% 0.790/0.097

convolution 85.1%/8.0% 0.787/0.113 85.3%/7.0% 0.797/0.100
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