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ABSTRACT

Mitigating automotive radar-to-radar interference is a chal-
lenging task, especially when the observed signal is densely
corrupted with highly correlated interference signals. In this
paper, we propose to remove this interference using joint-
conditional posterior sampling with score-based diffusion
models. These models use three individual scores: a tar-
get score, an interference score, and a joint data consistency
score. Leveraging the sparsity of clean target signals in the
Fourier domain, we propose a model-based score estimator
for the target signals, derived from the proximal step of the
ℓ1-norm. For the interference score, we use a neural network
with denoising score-matching, given that it is difficult to
obtain analytical statistical models of the interference signals.
Lastly, the target and interference scores are connected by a
data-consistency score. Experimental results show that our
solution results in superior performance over state-of-the-art
methods, in terms of normalized mean squared error (NMSE)
and receiver operating characteristic (ROC) curves.

Index Terms— Automotive Radar Interference, Deep
Learning, Diffusion Models

1. INTRODUCTION
Automotive inter-radar interference has been intensively stud-
ied due to the severe impact it can have on driving perfor-
mance, especially with more radars being deployed on vehi-
cles in the next years. Avoiding interference altogether is the
first attempt to reduce its impact; either in a coordinated or
uncoordinated fashion [1]. However, once the interference
enters the receiver front-end, mitigation using signal process-
ing is required. In the digital domain, many degrees of free-
dom can be exploited to reduce the impact, i.e. time [2],
frequency [3], time-frequency [4], and/or space [5, 6]. Be-
sides, several deep neural networks have been proposed [7, 8],
of which some exploit a signal prior [9]. While Bayesian
algorithms have achieved promising performance, this per-
formance hinges on accurate signal priors. The adoption of
highly expressive generative models is a promising direction
to model these signal priors.

Score-based diffusion models, a subset of generative
probabilistic models, have demonstrated the capability to

§Equal Contribution

approximate complex data distributions [10, 11]. They are
state-of-the-art for image generation as well as inverse prob-
lem solving across a variety of applications [12, 13, 14].
Stevens et al. recently proposed to remove structured noise
from natural images [15] and ultrasound data [16] using a
joint conditional diffusion process.

In this paper, we propose a joint-conditional probabilistic
diffusion model that can effectively separate radar interfer-
ence signals from target signals in the time domain, specif-
ically designed to remove highly correlated interference, as
well as densely corrupted Frequency-Modulated Continuous
Wave (FMCW) chirp signals. To our knowledge, we are the
first to apply diffusion models to radar signals. For interfer-
ence mitigation, we adopt two separate scores to incorporate
two independent signal priors. Firstly, a novel model-based
score is introduced within a diffusion model, called a proxi-
mal score function, that is designed for sparse target signals
in the Fourier domain, offering denoising in the complex do-
main with reduced computational complexity. Secondly, a
learned score function for interference signals exploits the
signal structure in the time domain. We demonstrate that our
approach outperforms other one-dimensional state-of-the-art
reconstruction methods [17, 18].

2. SIGNAL MODEL

In automotive radar, the received signals can consist of target
reflections (desired), inter-vehicle interference (undesired),
and thermal noise (undesired). Given that FMCW is the most
common waveform in automotive radar applications, we shall
focus our signal model to FMCW radars. For a single receive
antenna and a single chirp, the sampled signal y ∈ RN can
be expressed as [17]:

y =
∑
k

x(k) +
∑
l

i(l) + n = x+ i+ n , (1)

where x(k) = αk sin(ωkv + ϕk) with v =
[
0, . . . , M − 1

]
denotes the k-th target reflection with αk, ωk and ϕk rep-
resenting the received signal amplitude, its frequency and
phase, respectively, and M is the number of fast-time sam-
ples. Moreover, i(l) refers to the l-th interference signal
which is generally known to be time-limited after analog
down-mixing and anti-aliasing filtering. Lastly, n is the ther-
mal noise, modeled using a zero-mean Gaussian distribution.
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2.1. Source Separation Approach
Our goal is to mitigate the interference i while preserving the
targets x, which we propose to solve using a source separa-
tion approach. Given the ill-posed nature of the problem, and
assuming that the target and interference signals are indepen-
dent with distinct data distributions, we introduce priors and
sample from the joint conditional posterior using:

x, i ∼ p(x, i|y) ∝ p(y|x, i) · p(x) · p(i) , (2)

where p(x, i|y) is the joint conditional posterior distribu-
tion. Additionally, p(x) is the prior for the targets, which
are known to be sparse in the Fourier domain. Besides, p(i)
represents the prior for the interference, explicitly modeled
in the time domain using a deep generative network. Lastly,
p(y|x, i) denotes the joint data consistency term. We now
propose a three-stage approach to get samples from the joint
conditional posterior. First, we define separate priors for in-
terference and targets. Subsequently, we incorporate the pri-
ors into a diffusion process. Finally, we derive the estimated
interference and subtract it from the noisy observations. This
aids in preserving the weak targets buried under the noise
floor, setting the stage for their recovery in subsequent signal
processing steps.

3. METHOD
Diffusion models are generative models that evolve data
in a forward diffusion process, ultimately leading to ran-
dom Gaussian noise. This process can be represented by a
stochastic differential equation (SDE):

dx = f(t)x+ g(t)dw, (3)

where f(t) and g(t) are the drift and diffusion coefficients,
respectively, at time step t. Here, we choose to utilize Vari-
ance Preserving (VP) SDE for perturbing both the targets and
interference. Given a clean sample x0 from the target distri-
bution, the perturbed data at time step t can be represented as:
xt =

√
ᾱtx0 +

√
1− ᾱtz with z ∼ N (0, I) and ᾱt =

∏
t αt

with αt being a scalar determined from f(t) and g(t).
Time-reversing the process enables us to generate novel

samples from the target data distribution. The generation
relies on the gradient of the log-probability density function,
commonly known as the score, and can be analytically ex-
pressed through a reverse-time SDE. For joint conditional
data generation, the corresponding reverse-time SDE can be
formulated as follows:

d(xt, it) =

[
f(t)(xt, it)− g(t)2∇xt,it log p(xt, it|y)

]
dt+ g(t)w̄t . (4)

However, ∇xt,it log p(xt, it|y) is not directly solvable. To
address it, we resort to (2) and take the derivative with respect
to xt or it. This results in the following equations:

∇xt log p(xt, it|y) = ∇xt log p(xt) +∇xt log p(y|xt, it), (5)

∇it log p(xt, it|y) = ∇it log p(it) +∇it log p(y|xt, it). (6)
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Fig. 1: Block diagram of the proposed joint-conditional dif-
fusion model.

Consequently, for generating interference-free signals via the
joint conditional reverse-time SDE, it is essential to obtain
knowledge of the scores of the targets, interference, and joint
data consistency, which we address in Sections 3.1, 3.2, and
3.3. We refer to the procedure as a joint conditional diffusion
process. See Fig. 1 for an overview.

3.1. Proximal Score Function: Targets
The clean target signal x is a sparse superposition of sinu-
soidal signals, as previously noted in (1). Therefore, we pro-
pose to model the prior belief of X = Fx as a Laplace distri-
bution. Using this prior knowledge, we can calculate the score
function of the target signal ∇xt

log p(xt) from (5) more ac-
curately in the Fourier domain. Moreover, we can define the
score using Tweedie’s approximation [19]:

∇Xt log p(Xt) =

√
ᾱtX0|t −Xt

1− ᾱt
, (7)

where X0|t denotes the posterior mean E[X0|Xt], i.e., a de-
noised estimate from Xt at time step t. Assuming indepen-
dent Laplacian priors, the denoising problem is solved using
the Maximum A Posterior (MAP) estimator, hence the de-
noised estimate X0|t is found from

X0|t = argmin
X

1

1− ᾱt
||Xt −X||22 + λ||X||1 , (8)

where 1− ᾱt refers to noise variance at time step t and λ is a
scalar that balances the reconstruction error against sparsity.
The solution to (8) is known to be the proximal step, defined
by the soft threshold operator

X0|t =
1√
ᾱt

proxλ||·||(Xt) =
1√
ᾱt

Xt

|Xt|
(|Xt| − λ)+, (9)

where the threshold λ is determined from the noise variance
and the Laplace scale parameter σ̄L at time step t, hence
λ =

√
2(1−ᾱt)√
ᾱtσ̄L

. Unlike current real-valued diffusion models,
our proximal score enables denoising complex input data, i.e.
Fourier transformed data. Then, X0|t is used to retrieve the
perturbed estimate of the previous time step x̃t−1.
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3.2. Learned Score Function: Interference
Given the challenging nature of modeling the interference sig-
nal, we employ a neural network to estimate the interference’s
score function sθ(it, t) ≈ ∇it log p(it), which can be injected
into (6). Here, we adopt a conditional U-Net architecture, fol-
lowing [20], while with modifications that incorporate self-
attention for better temporal correlation estimation. During
training, we perturb the clean interference i0 ∼ p0(i) to ob-
tain the noisy samples it ∼ q(it|i0), which are then fed into
the network. The score function is estimated by employing
denoising score matching [21], as formulated below:

θ∗ = argmin
θ

Et

[
wtEi0Eit|i0

∥∥∥∥∥sθ(it, t)−∇it log q(it|i0)
∥∥∥∥∥
2

2

]
,

(10)
where θ denotes the learnable parameters within the neural
network, wt is a positive weighting function, t is uniformly
sampled over [10−5, 1]. The objective of the training is to
minimize the weighted squared error between the estimated
score by the network and the score of the perturbed inter-
ference, sampled at various t. Guided by this objective, the
network functions as a denoiser, steering towards the direc-
tion of clean samples by connecting the manifolds at different
time steps. After adequately training the network, similar to
(7), the posterior mean of the interference signal i0|t can be
described by exploiting Tweedie’s approximation:

i0|t ≈
1√
ᾱt

(
it + (1− ᾱt) sθ (it, t)

)
, (11)

which implies that for a perturbed sample it, the learned score
allows to retrieve its noise-reduced version, i0|t. Analogous to
the target signals, during inference, this can be used to obtain
the perturbed estimate of the previous time step ĩt−1.

3.3. Joint Data Consistency Score
The score of the joint data consistency in (5) and (6) is typ-
ically intractable due to its dependence on the perturbed sig-
nals at time t. Instead, we employ a method known as Dif-
fusion Posterior Sampling (DPS) as a surrogate, as described
in [13]. Considering our measurement model, as described in
(1), adheres to a Gaussian distribution with a zero mean and
a standard deviation of σn, we can establish the following ap-
proximation:

p(y|xt, it) ≈ p(y|x0|t, i0|t) ∼ N (x0|t + i0|t, σ
2
n), (12)

where x0|t = FHX0|t and i0|t are obtained using (9) and
(11), respectively. To this end, the score of the joint data con-
sistency turns tractable and can be formulated as follows:

∇xt log p(y|xt, it) ≈ −
1

σ2
n

∇xt
∥y − x0|t − i0|t∥22 (13)

∇it log p(y|xt, it) ≈ −
1

σ2
n

∇it ∥y − x0|t − i0|t∥22 (14)

By integrating the score functions of the targets, interference
and joint data consistency within an iterative framework, we
establish a comprehensive flow for a joint conditional pro-
cess. See the algorithm below for details. In this paper, the
estimated target signal x̂ = y − i0 is used for evaluation.

Algorithm 1 Joint Conditional Posterior Sampling
Input: N , y, sθ, σ̄L, ε1, ε2
Initialization: xN ∼ N (0, I), iN ∼ N (0, I)

1: for i = N − 1 to 0 do
2: t← i+1

N

3: λ←
√
2(1−ᾱt)√
ᾱtσ̄L

4: c1 ←
√
αt(1−ᾱt−1)

1−ᾱt
, c2 ←

√
ᾱt−1βt

1−ᾱt
, c3 ← 1−ᾱt−1

1−ᾱt

5: z← N (0, I)
▷ Calculate Posterior mean

6: X0|t ← 1√
ᾱt

proxλ||·||(Fxt)

7: x0|t ← FHX0|t
8: i0|t ← 1√

ᾱt
(it + (1− ᾱt)sθ(it, t))

9: x̃t−1 ← c1xt + c2x0|t + c3z

10: ĩt−1 ← c1it + c2i0|t + c3z
▷ Data consistency steps

11: xt−1 ← x̃t−1 − ε1∇xt
∥y − x0|t − i0|t∥22

12: it−1 ← ĩt−1 − ε2∇it∥y − x0|t − i0|t∥22
13: end for
14: return x̂ = y − i0

4. RESULTS
4.1. Experimental Setup

The radar data y is simulated for K ∈ {1, 2, . . . , 30} targets,
each target having a Signal-to-Noise Ratio (SNR) between
−30 dB and 20 dB. The number of interferers is limited to
one, which is configured to have an Interference-to-Noise Ra-
tio (INR) between 0 dB and 20 dB and randomly configured
interference chirp settings, i.e., chirp slope, chirp rate, RF
chirp bandwidth, chirp duration, carrier frequency, etc., such
that a broad range of interference samples are achieved.

First, we trained the interference score function using a
training dataset composed of 7,000 clean interference sam-
ples. The INR was randomly sampled from a range of 0 dB
to 20 dB. For training, the batch size was set to 100 and
training was stopped after convergence, which generally re-
quired a minimum of 500 epochs. For optimization, we em-
ploy the Adam optimizer with a learning rate set at 10−4.
Subsequently, the score functions were integrated into an it-
erative framework. The hyperparameters λ, ε1, and ε2 were
fine-tuned based on the validation set.

4.2. Evaluation Metrics and Discussion

To emphasize the effectiveness of the proposed technique
compared to state-of-the-art methods, we estimate the recon-
struction performance in the time domain using the Normal-
ized Mean Squared Error (NMSE) of x̂ by 10 log10

(
||x−x̂||22
||x||22

)
,
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Fig. 2: Reconstruction for SNR = −20 dB and INR = 0dB
(top) Time-domain signal y, (bottom) Distance spectrum Y.

Table 1: Reconstruction Performance, measured in NMSE

SNR=−20dB SNR=0dB

Method
INR

0dB 10dB 20dB 0dB 10dB 20dB

No mitigation 6.381 66.97 651.8 0.412 4.487 44.82
Zeroing 0.611 1.375 8.621 0.322 0.454 2.789
SALSA [17] 2.179 20.89 198.4 0.247 1.425 13.86
LowRaS [18] 4.143 39.82 402.8 0.677 2.953 25.13
Diffuse (ours) 0.159 0.252 0.286 0.394 0.361 0.337

and the detection performance using ROC curves, imple-
mented with Ordered-Statistic Constant False Alarm Rate
(OS-CFAR) on the distance spectrum X̂. Our method is com-
pared to other source separation solutions that exploit sparsity
in transformed domains (frequency, and STFT resp.) [17], or
in Hankelized matrices [18].

In Fig. 2 and 3, we present two examples of real-valued
time-domain signal x̂ and the positive frequency components
of Fx̂ to substantiate the reconstruction performance of the
proposed method in realistic interference scenarios, an un-
correlated and semi-correlated case, respectively. Despite the
low SNR-valued target signal, we can accurately remove the
interference and recover the distance spectrum. In Tab. 1, sta-
tistically grounded results for various SNR and INR values
are provided. Hereby, we prove that our method significantly
outperforms other methods for all cases, except when SNR =
0dB and INR = 0dB. Here, the learned interference score
experiences difficulties in separating low-amplitude interfer-
ence signals from target signals with similar power, which we
intend to address in future work.

In Fig. 4, we show the ROC curves to compare various
algorithms for a single target and single interferer by fixing
SNR and INR. The detection performance of our method is
close to the performance of the clean signal, but it signif-
icantly outperforms the other methods for all preset false-
alarm rates PFA of the detector.
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Fig. 3: Reconstruction for SNR = −20 dB and INR = 20dB
(top) Time-domain signal y, (bottom) Distance spectrum Y.
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5. CONCLUSIONS
We present a novel and flexible algorithm to address the in-
terference mitigation problem as an inverse problem. Our
method leverages a complex-valued proximal score function
that implicitly serves as a target signal prior. In addition, we
utilize a data-driven score, to accurately represent the signal
structure of the interference. Moreover, leveraging the core
of the diffusion process, we integrate the score functions to
enable joint conditional posterior sampling. Empirically, we
demonstrate that this algorithm surpasses other leading recon-
struction methods utilized in FMCW automotive radar. While
the paper emphasizes removing FMCW radar interference,
the proposed approach is flexible and thus may be adapted to
train on various interfering waveforms, i.e., Phase-Modulated
Continuous Wave, Orthogonal Frequency Domain Multiplex-
ing, and more.
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