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Abstract 

Study Objectives:  Hypnograms contain a wealth of information and play an important role in sleep medicine. However, interpreta-
tion of the hypnogram is a difficult task and requires domain knowledge and “clinical intuition.” This study aimed to uncover which 
features of the hypnogram drive interpretation by physicians. In other words, make explicit which features physicians implicitly look 
for in hypnograms.

Methods:  Three sleep experts evaluated up to 612 hypnograms, indicating normal or abnormal sleep structure and suspicion of 
disorders. ElasticNet and convolutional neural network classification models were trained to predict the collected expert evaluations 
using hypnogram features and stages as input. The models were evaluated using several measures, including accuracy, Cohen’s 
kappa, Matthew’s correlation coefficient, and confusion matrices. Finally, model coefficients and visual analytics techniques were 
used to interpret the models to associate hypnogram features with expert evaluation.

Results:  Agreement between models and experts (Kappa between 0.47 and 0.52) is similar to agreement between experts (Kappa 
between 0.38 and 0.50). Sleep fragmentation, measured by transitions between sleep stages per hour, and sleep stage distribution 
were identified as important predictors for expert interpretation.

Conclusions:  By comparing hypnograms not solely on an epoch-by-epoch basis, but also on these more specific features that are 
relevant for the evaluation of experts, performance assessment of (automatic) sleep-staging and surrogate sleep trackers may be 
improved. In particular, sleep fragmentation is a feature that deserves more attention as it is often not included in the PSG report, and 
existing (wearable) sleep trackers have shown relatively poor performance in this aspect.
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Graphical Abstract 

Statement of Significance

The hypnogram contains a wealth of information, and analysis of the hypnogram is a core part of the sleep diagnostic process. 
However, there is surprisingly little research on how hypnograms are interpreted and which aspects are relevant to experts. Nev-
ertheless, assessment of hypnograms requires expertise, obtained through training and clinical experience. We believe that there 
must be certain features of the hypnogram that implicitly drive experts in their assessment. This motivated us to conduct the pres-
ent study, where we aim to identify and quantify these features that are implicitly used by experts. Identifying and understanding 
these features is meaningful for several reasons and has important implications for automatic scoring algorithms and inter-rater 
(dis)agreement programs.

Introduction
Polysomnography (PSG) remains the current gold standard for 
assessment of sleep and sleep quality. Using standardized scoring 
rules, provided by the American Academy of Sleep Medicine, sleep 
stages are assigned to each 30-second epoch in the recording [1]. 
The sequence of annotated sleep epochs throughout the night is 
then visualized in a hypnogram. Additionally, a limited number of 
quantitative measures are extracted from the hypnogram, such 
as sleep onset latency, sleep efficiency, and percentages spent in 
each sleep stage [1].

From a clinical perspective, the hypnogram contains a wealth 
of information. Therefore, it is one of the most important instru-
ments in sleep medicine. Together with other information from 
the PSG report, a patient’s medical history, and experienced symp-
toms, the hypnogram is used to determine if and which sleep 
disorders are present and how sleep quality is affected. Despite 
playing such an important role, there are no formal guidelines on 
how to visually interpret a hypnogram. Instead, interpretation of 
the hypnogram is subjective and requires domain knowledge and 
“clinical intuition.” Nevertheless, there must be certain patterns 
or features of the hypnogram that are important to experts and 
that drive their interpretation. These patterns are not explicitly 

described in sleep medicine manuals or guidelines. Instead, the 
recognition of these features implicitly develops with clinical 
experience, after visualizing large numbers of hypnograms dur-
ing training and in practice, parsed together with clinical pres-
entation and medical history.

Our aim is to uncover these features of the hypnogram and 
make them explicit and quantifiable. Furthermore, we want to 
find out how strongly and in which manner they contribute to 
expert interpretation of the hypnogram.

Understanding how this “clinical intuition” works and which 
features of the hypnogram drive expert interpretation, is impor-
tant for several reasons. First, the creation of a hypnogram is a 
costly and a time-consuming process. It should therefore be stud-
ied if and how hypnograms are used in clinical practice. Second, 
knowing which features of the hypnogram drive interpretation 
enables us to focus on more meaningful metrics for the evalua-
tion of automatic scoring algorithms, besides the commonly used 
accuracy and Cohen’s Kappa of agreement. These metrics would 
allow for a clearer distinction between scoring algorithms which 
might give similar accuracy scores and yet display different sleep 
behavior, for example for sleep fragmentation (number of sleep 
stage transitions per hour). Third, it could provide a new lens to 
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look at human inter-rater (dis)agreement in sleep stage scoring. 
It is well-documented that there is a limited agreement between 
human scorers on an epoch-by-epoch basis of only around 82.6%. 
In particular, N1 and N3 suffer from this with reported agree-
ment of 63% and 67.4%, respectively [2]. While this disagreement 
itself has often been studied, its effect on how hypnograms are 
clinically used and interpreted has not. If we know which hypno-
gram features drive clinical interpretation, we know which forms 
of disagreement are meaningful and which are not. Last but not 
least, understanding which hypnogram features are important 
may inspire the derivation of new clinically meaningful quantifi-
able measures besides the standard measures such as sleep onset 
latency and sleep efficiency, usually provided in PSG reports.

There are few studies that assess how hypnograms are inter-
preted and used in clinical settings. It therefore remains largely 
unknown which features of the hypnogram drive expert interpre-
tation. To the best of our knowledge, there is only one study that 
aims to relate features of the hypnogram with subjective evalu-
ations by sleep experts. In a small experiment, it was shown that 
the interpretation of 52 hypnograms in terms of normal or abnor-
mal structure could be predicted accurately from the sleep stage 
distribution (percentage per sleep stage) [3]. Moreover, it was 
demonstrated that specific disorders, such as sleep-disordered 
breathing and insomnia, are associated with differences in sleep 
structure [4, 5]. However, the diagnostic value of the hypnogram is 
limited when considered without clinical information. For exam-
ple, a healthy person may also show an abnormal sleep structure 
because of the “first-night effect” [6]. Conversely, in some cases, a 
person with a clinically relevant disorder may have an apparently 
normal sleep structure.

In this study, we took a quantitative approach to identify which 
features of the hypnogram contribute to interpretation by experts. 
To that end, hypnograms were presented to sleep physicians 
without any additional clinical information. Their assessments 
regarding whether hypnograms were normal or not, or possibly 
corresponding to a sleep disorder, were recorded. We then trained 
a logistic regression (LR) and a neural network (NN) model to pre-
dict these expert assessments, using both traditional as well as 
automatically learned features of the hypnogram. By attempting 
to “mimic” the expert classification, we expect these models to 
use similar features as those implicitly used by the physicians. 
The most important features driving the classification with both 
models were finally uncovered using correlation analysis, and a 
NN visual analysis technique.

Methods
Study outline
Hypnograms were obtained from PSG recordings available in the 
Sleep and Obstructive Sleep Apnea Monitoring with Noninvasive 
Applications (SOMNIA) database [7]. After exclusion of partici-
pants younger than 18 or older than 80 years, 1096 hypnograms 
were available. These included participants with a wide variety of 
sleep disorders. The recordings were scored by experienced sleep 
technicians at the Sleep Medicine Center Kempenhaeghe for each 
30-second epoch using the AASM guidelines [8]. Additionally, 97 
hypnograms from healthy participants were included in the 
HealthBed dataset [9]. The HealthBed dataset comprises healthy 
adults without sleep disorders or other medical or psychiatric 
comorbidity, who underwent a PSG using the same protocol as 
the SOMNIA recordings [7]. The SOMNIA and HealthBed studies 
were reviewed by the medical ethical committee of the Maxima 

Medical Center (Veldhoven, the Netherlands. File no: N16.074 and 
W17.128). The protocol for data analysis was approved by the 
Institutional Review Board of the Kempenhaeghe Hospital and 
by the Internal Committee of Biomedical Experiments of Philips 
Research.

The hypnograms were assessed by three clinical sleep 
experts, all experienced physicians with backgrounds in general 
medicine, pulmonology, and neurology, referred to as experts 
A, B, and C, respectively. Since there are no clear guidelines on 
hypnogram interpretation, and we are interested in subjec-
tive assessments, we did not provide instructions on how the 
assessment should be done. Instead, we left this up to the expe-
rience and clinical intuition of the physicians. For each hypno-
gram, the experts had the choice options of normal, abnormal 
but healthy, or abnormal with a suspected disorder. In other words, 
normal and abnormal specifically referred to the visualized 
sleep structure. For example, an abnormal sleep structure in 
a healthy participant could very well occur because of the first 
night effect [6]. During a pilot study, it was found that, since 
sleep experts are used to visualize hypnograms when diag-
nosing disorders, it was helpful to explicitly assess both sleep 
structure (normal vs. abnormal) and the presence of a disorder 
as separate choice options.

Importantly, the hypnograms were presented in a restricted 
setting, with no clinical information except the participants’ 
age. Other factors were omitted to focus the interpretation on 
the structure of the hypnogram itself. Age was included as it is 
a well-known factor that influences sleep structure regardless of 
the presence of a disorder, and which could affect expert inter-
pretation. Because of the omission of other clinically relevant 
information, the outcome of the assessments does not represent 
a formal clinical diagnosis in any way. Finally, the experts were 
asked to rate how certain they were of their assessment, on a 
5-point Likert scale ranging from very uncertain (1) to very certain 
(5).

To assist in the assessment, we developed a web application 
where experts could login and rate hypnograms at their own 
pace. To ensure a diverse range of assessments, the order of the 
hypnograms was randomized, with the first 200 hypnograms 
being the same for all experts, and each expert subsequently 
receiving their own unique sequence. A subset of the HealthBed 
hypnograms was given priority in the sequence to increase the 
diversity of the assessed hypnograms, as it was not expected that 
a single physician would evaluate all available 1193 hypnograms. 
The distribution of hypnograms and the order of the assessment 
sequence is also illustrated in Figure 1. The main interface of 
the web app that was used to collect the assessments is shown 
in Figure 2. A meeting was held to introduce the study and the 
scoring application, where experts were informed that there were 
no correct or incorrect answers and asked to rely on their initial 
impressions of the hypnograms.

Analysis
During a pilot study with the experts, it was found that the first 
hypnograms were more difficult to assess since the task of inter-
preting hypnograms without additional clinical context was 
novel to them. Therefore, the first 50 responses were discarded 
for each of the raters. Using simple visualizations and statistics, 
we inspected the distribution of the collected evaluations and 
certainty scores across the experts. The distribution of evalua-
tions was also compared across participants with a diagnosis of 
sleep disorder (SOMNIA) and healthy participants (HealthBed). 
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Agreement between experts was measured using Cohen’s Kappa 
and Matthew’s Correlation Coefficient (MCC).

To identify features of the hypnogram that drive interpre-
tation by experts, a LR model and a convolutional NN (CNN) 
were developed to predict expert evaluation [10]. We selected LR 
because of its familiarity and interpretability. A more complex 
CNN model was selected to discover additional, more complex, 
interrelated, features without relying on manually engineered 
features.

Logistic regression.
The quantitative features shown in Table 1 were computed for each 
hypnogram and used as input for the model. The model was trained 
to predict 1 if the hypnogram was labeled by one of the experts as 
normal or abnormal-healthy, and 0 if the expert labeled the hypno-
gram as abnormal-disordered. Grouping of normal and abnormal-healthy 
was applied since the normal option was hardly used.

All unique hypnograms that were evaluated were split into 
a training (70%) and test set (30%). For hypnograms that were 
evaluated by multiple experts, we included all evaluations in the 
corresponding set (either training or test, but not both). It has 
been shown that training with one-hot encoded labels in this way 
results in learning the underlying label distribution [11]. Input 
features were standardized (zero mean, unit variance) to enable 
comparison of model coefficients across features. Standardization 
was applied based on the mean and variance of the unique hyp-
nograms in the training set. To deal with the strong correlation 
between many of the features, we used Elastic Net, a type of 
regression that combines L1 and L2 regularization to provide vari-
able selection, deal with multicollinearity, and prevent overfitting 
[12]. Optimal values for the alpha, which controls the trade-off 
between L1 and L2 regularization, and lambda hyperparameters 
were estimated using grid search in combination with 10-fold 
cross-validation over the set of training evaluations. Sample 

Figure 1.  Hypnogram distribution for assessment. Distribution of SOMNIA and HealthBed hypnograms. The order in which they were presented in the 
web app was randomized with the first 200 hypnograms having a fixed order across experts. HealthBed hypnograms were prioritized in the sequence 
to ensure a more diverse set of hypnograms early on. Sleep experts assessed a variable amount of hypnograms as indicated by the dotted, red lines.

Figure 2.  User interface for web-based hypnogram assessment. The hypnogram is shown in the top center of the screen. (A) The evaluation and 
certainty options can be selected below the hypnogram, keyboard shortcuts can be used to select the buttons (e.g. [Q] for normal sleep structure). (B) 
When evaluation and certainty are selected, the result can be submitted to continue to the next hypnogram. (C) Using the previous and next buttons 
the user can scroll back and forth between previously evaluated hypnograms. (D) Age is the only clinical information that is presented.
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weights were used during training to account for class imbal-
ance and differences in the number of assessments per expert. 
Probabilities predicted by the model were binarized at a threshold 
of 0.5 to obtain class predictions. The model was implemented 
using Python and scikit-learn [13].

Model performance was evaluated by means of its accuracy 
on the test set. The confusion matrix was inspected to under-
stand model performance across the classes. Due to the subjec-
tive nature of the target variable, we did not expect the classes to 
be perfectly separable. Therefore, the accuracy of the model was 
compared across certainty levels assigned by the expert. Here we 
assume that errors on low-certainty evaluations are less severe 
compared to high-certainty evaluations. Similarly, for the hyp-
nograms that were evaluated by multiple experts, we inspected 
the model performance with respect to the agreement between 
experts. Pairwise agreement between models and experts was 
computed using Cohen’s Kappa. All model evaluation methods 
were computed over the test set.

To evaluate which features drove inference, the model coeffi-
cients of the included features were evaluated. Standardization 
of features before fitting the model allowed us to compare the 
magnitude of the model coefficients across features. Therefore, 
features with positive model coefficients contribute to nor-
mal and abnormal-healthy evaluation, whereas features with 

negative model coefficients contribute to abnormal-disordered 
evaluation.

Convolutional NN.
In addition to the logistic regression model, we implemented a 
NN for the same task because of its ability to automatically learn 
suitable abstract representations from data. Because they are 
not limited to manually engineered features, they can be used 
to identify additional (more complex) patterns. More specifically, 
CNN was selected for its proven effectiveness in time-series clas-
sification [14]. All hypnograms were one-hot encoded as a binary 
matrix where each row represents one of the five stages and each 
column an epoch of the hypnogram. The one-hot encoded hyp-
nograms were used as input to the CNN. The model was trained 
using the same target variable, train-test split, and sample 
weights as the LR model.

We considered CNN architectures with a small number of con-
volutional layers, followed by a global average pooling (GAP) layer 
that takes the average value for each channel across the temporal 
dimension. By using a GAP layer, we enable the use of class acti-
vation maps (CAM) to deal with the challenge of explainability 
in NNs [15] and allow a visual interpretation of the results, and 
features driving NN inference.

Table 1.  Hypnogram Features as Input for the Elastic Net Logistic Model

Feature Abbreviation Description

% Wake %W Percentage of W in hypnogram

% N1 %N1 Percentage of N1 in hypnogram

% N2 %N2 Percentage of N2 in hypnogram

% N3 %N3 Percentage of N3 in hypnogram

% REM %REM Percentage REM in hypnogram

Maximum wake MaxW Maximum consecutive duration of Wake.

Maximum N1 MaxN1 Maximum consecutive duration of N1 sleep

Maximum N2 MaxN2 Maximum consecutive duration of N2 sleep

Maximum N3 MaxN3 Maximum consecutive duration of N3 sleep

Maximum REM MaxREM Maximum consecutive duration of REM sleep

Sleep cycles CCL* Number of sleep cycles*

Sleep stage transition index SSTi Number of transitions per hour of recording

Awakening index WKNi Number of transitions to W per hour of recording

N1 transition index N1Ti Number of transitions to N1 per hour of recording

N2 transition index N2Ti Number of transitions to N2 per hour of recording

N3 transition index N3Ti Number of transitions to N3 per hour of recording

REM transition index REMSSTi Number of transitions to REM per hour of recording

REM awakenings index REMWKNi Number of transitions from REM to W per hour of recording

N3 awakenings N3WKN Number of transitions from N3 to W

Snooze time ST Number of minutes W at the end of the hypnogram

Sleep onset latency SOL Number of minutes from the start until the first non-W epoch

N3 onset latency N3OL Number of minutes from the start until first N3 epoch

REM onset latency REMOL Number of minutes from the start until first REM epoch

Wake after sleep onset WASO Number of minutes spent in W after sleep onset

Long awakenings WKNL Amount of Wake periods of at least 5 minutes

Time in bed TIB Total time of hypnogram.

*Sleep cycles were computed as the number of periods in the hypnogram ≥ tr minutes with at least pr % REM in this period, followed by a period ≥ tn minutes 
with a minimum of pn % NREM. The parameters were chosen as: tr = 10 minutes, tn = 30 minutes, and pr = pn = 55%.
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A suitable number of layers and nodes was selected by exper-
imenting with several combinations and inspecting the results. 
The output of the model was obtained using a fully connected 
final layer with a sigmoid activation function to map the out-
come to probabilities. The model was trained using binary 
cross-entropy loss. Implementation was performed using Python 
and Keras [16].

The same evaluation methods used for the LR model were also 
used for the CNN, including accuracy and confusion matrix. In 
addition, CAM was implemented as described by Zhou et al. [15], 
where a heatmap was plotted as background for a group of ran-
domly sampled hypnograms from both classes to visually ana-
lyze and evaluate which hypnogram characteristics were used 
by the model. These characteristics were considered drivers of 
expert interpretation.

Results
The three experts assessed 612, 351, and 405 hypnograms, respec-
tively. Only 1%–4% of the hypnograms were assessed as normal 
by the experts. Therefore, as mentioned in the methods section, 
it was decided to group the evaluations as healthy (including 
the assessments normal [hypnogram] and abnormal [hypnogram, 
but considered] -healthy) and disordered (abnormal [hypnogram, 
considered]-disordered). Similarly, the lowest certainty score was 
only used 13 times in total, therefore, certainty was grouped as 
low (1–2), medium (3), and high (4–5).

Most of the hypnograms were evaluated as disordered (82%, 
79%, and 72% for experts A, B, and C, respectively). Pairwise 

Cohen’s Kappa agreements between the experts were 0.44 (A–B), 
0.50 (A–C), and 0.38 (B–C). The values for MCC were 0.44 (A–B), 
0.52 (A–C), and 0.38 (B–C). Figure 3 shows the certainty-level 
distribution across healthy and disordered assessments for each 
expert. The high-certainty bars (red) are larger than the low-
certainty bars (pink) in case of disordered evaluation. The exact 
opposite holds for healthy evaluations. Thus, experts were highly 
certain of disordered evaluations but in general less certain about 
healthy evaluations. Note that the inter-rater agreement between 
the clinical experts themselves also serves as an upper bound 
on the performance of the learned models: in the best case, the 
models can reach a Cohen’s kappa agreement of 0.38~0.50 with 
respect to the individual experts.

Table 2 displays the number of disordered and healthy eval-
uations across the SOMNIA and HealthBed sets per expert. The 
sleep-disordered patients from the SOMNIA dataset had a hyp-
nogram that was evaluated as disordered in 85%, 87%, and 77% 
of the cases for experts A, B, and C, respectively. In contrast, the 
hypnograms of the healthy participants from the HealthBed 
cohort, were evaluated as disordered in 62%, 46%, and 45% of 
the cases.

Logistic regression
During hyperparameter optimization, the values for alpha and 
lambda were selected to be 0.7 and 0.01. The model achieved 
an overall 77% on the evaluations in the test set. The con-
fusion matrix for the predictions on the test set is shown in 
Table 3. The model was 80% accurate on hypnograms that were 
evaluated as healthy by the expert and 76% on the disordered 

Figure 3.  Certainty distribution. Certainty-level distribution across healthy and disordered assessments for each expert. For all experts, certainty was 
high for disordered evaluations and low for healthy evaluations. Each bar is annotated with the exact count.

Table 2.  Number (N) and Percentage of Disordered/Healthy Evaluations for Each Expert Across Healthy (HealthBed) and Sleep-
Disordered Adults (SOMNIA)

HealthBed (N = 97) SOMNIA (N = 1096)

Expert N P (Disordered) P (Healthy) N P (Disordered) P (Healthy)

A 68 62% 38% 544 85% 15%

B 68 46% 54% 283 87% 13%

C 67 45% 55% 338 77% 23%
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evaluations. Accuracy was higher on the high-certainty hyp-
nograms, with 90% and 100% accuracy for disordered and 
healthy, respectively, as shown in Table 4. In contrast, accuracy 
was limited to 38% and 68% when experts indicated low cer-
tainty. The logistic model was 90% accurate on the subset of 164 
hypnograms where the experts agreed; thereby ignoring con-
trasting examples in the test set where the same hypnogram 
was assessed differently by multiple experts. Pairwise Cohen’s 
Kappa agreements of the model with each expert were between 
0.47 and 0.52. MCC values were between 0.48 and 0.56. For both 
measures, this is in line with the inter-rater agreement between 
the experts themselves.

The 15 features included in the LR model after training (i.e. 
non-zero coefficients) are presented in Table 5. The intercept of 

the model was −0.98. The presence of REM, sleep cycles, and con-
secutive N2 were found to contribute the most to a hypnogram 
evaluation as healthy. On the other hand, a high transition index, 
presence of (long) W, awakenings, and presence of N1 were the 
strongest contributors to an evaluation as disordered.

Convolutional NN
The CNN was trained using the same labels, train-test split, and 
sample weights as the logistic model. The final CNN architecture 
consisted of three convolutional layers, a GAP layer, and a fully 
connected layer.

The overall accuracy of the model on the test set was 75%, 
on the disordered and healthy groups, this was 73% and 83%, 
respectively. On high-certainty hypnograms, the model was 
86% and 100% accurate for disordered and healthy, respectively. 
Accuracy on healthy hypnograms evaluated with medium-
certainty was 94%, in contrast, the performance on other low- 
and medium-certainty evaluations ranged between 35% and 
70%. On the subset of 164 hypnograms in the test set where 
experts agreed, the model correctly predicted the evaluation 
in 84% of the cases. Pairwise Cohen’s Kappa agreements of the 
CNN model with each expert were between 0.48 and 0.50, which 
is on par with the LR model and the agreement across clinical 
experts themselves. The agreement between the CNN and LR 
model for all hypnograms in the test set was 0.86; all pairwise 
agreements between model(s) and experts are shown in Table 
6. The exact model architecture and detailed results (including 
confusion matrices) are provided in Supplementary Table S1–S3.

The CAM visualizations for four randomly sampled hypno-
grams are shown in Figure 4 and provide insight into the charac-
teristics that most contribute to the model predictions. The CNN 
distinguished between the continuous presence of a stage and 
transitions. From the heatmaps, it can be observed that the pres-
ence of N2, N3, and REM (i.e. percentage of hypnogram in each 
stage) contribute to a prediction of healthy, and W, N1, and frag-
mentation to a prediction of disordered.

Table 3.  Confusion Matrix for the Logistic Model. Percentages 
are Computed Over the True Label

Predicted

Disordered Healthy

True Disordered 256 (76%) 80 (24%)

Healthy 18 (20%) 71 (80%)

Table 4.  Accuracy of the Logistic Model at Each Certainty Level

True evaluation (certainty) Predicted

Disordered Healthy

Disordered (high) 198 (90%) 23 (10%)

Disordered (medium) 37 (62%) 23(38%)

Disordered (low) 21 (38%) 34 (62%)

Healthy (low) 14 (32%) 30 (68%)

Healthy (medium) 4 (12%) 29 (88%)

Healthy (high) 0 (0%) 12 (100%)

Table 5.  Input Features Included in the Elastic Net Logistic Regression and Associated Coefficients. The Features are Sorted by Model 
Coefficient From Positive (Healthy) to Negative (Disordered)

Feature Abbreviation Description Coefficient

% REM %REM Percentage REM in hypnogram 0.25

Sleep cycles CCL Number of sleep cycles 0.22

Maximum N2 MaxN2 Maximum consecutive duration of N2 sleep 0.20

N3 Transition index N3Ti Number of transitions to N3 per hour of recording 0.19

Maximum N3 MaxN3 Maximum consecutive duration of N3 sleep 0.18

Snooze time ST Number of minutes W at the end of the hypnogram 0.18

REM awakenings index REMWKNi Number of transitions from REM to W per hour of recording 0.02

Time in bed TIB Total time of hypnogram. −0.04

REM transition index REMTi Number of transitions to REM per hour of recording −0.15

N3 awakenings N3WKN Number of transitions from N3 to W −0.25

% N1 %N1 Percentage of N1 in hypnogram −0.33

Awakening index WKNi Number of transitions to W per hour of recording −0.36

Long awakenings WKNL Amount of Wake periods of at least 5 minutes −0.50

Maximum wake MaxW Maximum consecutive duration of wake. −0.73

Sleep stage transition index SSTi Number of transitions per hour of recording −0.78

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad306/7457386 by guest on 03 January 2024

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsad306#supplementary-data


8  |  SLEEP, 2023, Vol. XX, No. XX

Discussion
The hypnogram remains one of the most encompassing rep-
resentations of sleep structure and has important clinical use. 
However, the interpretation of the hypnogram relies on visual 
pattern recognition developed by physicians as clinical intuition, 
while quantitative parameters that are traditionally extracted 
may not fully convey all the information contained. Here, we took 
an unconventional approach by “forcing” experts to assess iso-
lated hypnograms and used their expert assessment to train clas-
sification models to predict these assessments, and subsequently 
look for salient aspects driving this interpretation.

Both the LR, and the CNN models performed similarly well 
with agreement versus expert human scorers comparable 

to the agreement between the expert scorers themselves. 
Importantly, using two completely different approaches to 
hypnogram feature extraction, both models agreed on which 
features contributed to the (subjective) interpretation of the 
hypnogram as healthy, or disordered. Overall, the presence of 
REM, N2, sleep cycles, and N3 were associated with a normal 
sleep structure by experts. In contrast, wake, N1, and overall 
sleep fragmentation (i.e. a high amount of sleep stage changes 
per hour) contributed to an evaluation of an abnormal hypno-
gram. Earlier work by Amouh [3] also found that sleep stage 
distribution is a predictor for expert interpretation; however, 
our work also emphasizes the importance of other features 
such as sleep fragmentation and sleep cycles.

Table 6.  Pairwise Cohen’s Kappa and MCC Between Experts, Logistic Regression (LR), and CNN

Expert A Expert B Expert C LR CNN

Expert A — 0.44 (0.44) 0.50 (0.52) 0.50 (0.56) 0.49 (0.56)

Expert B — 0.38 (0.38) 0.47 (0.48) 0.50 (0.52)

Expert C — 0.52 (0.53) 0.48 (0.51)

LR — 0.86 (0.86)

CNN —

Figure 4.  Class activation maps for hypnograms. Four randomly sampled hypnograms and their CAM visualizations. The heatmap illustrates how the 
CNN looks at the hypnogram; presence of N2, REM, and N3 contribute towards healthy evaluation prediction whereas W, N1, and fragmentation are 
associated with disordered evaluation by the model.
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The agreement between experts on the task is moderate (with 
a Kappa between 0.38 and 0.50), which illustrates the subjectivity 
of the labels and the difficulty of the task, especially for the more 
ambiguous, low-certainty cases. Interestingly, the agreement 
between the models and experts is similar (between 0.45 and 
0.52), which means that the model was able to adequately mimic 
the experts’ choices. Although this level of agreement might 
seem limited for a machine learning model, we cannot expect it 
to achieve higher agreement than that of experts amongst them-
selves. The high accuracy of the model in the high-certainty cases 
and in cases where all physicians agreed further suggests that the 
model adequately learned the hypnogram characteristics that 
physicians use for interpretation, taking into account that there 
is a significant group of ambiguous cases where the hypnogram 
is difficult to assess (also by experts) with such a limited context.

Our findings have several implications. The first relates to the 
performance evaluation of surrogate sleep measurement tech-
niques. Due to the high cost of polysomnography, wearable sleep 
trackers have drawn the attention of sleep experts. By recom-
mendation of the AASM, further validation is necessary before 
wearable sleep trackers can be used in clinical practice [17]. 
However, sleep staging methods are traditionally optimized for 
epoch-by-epoch performance which does not guarantee that clin-
ically relevant features are correctly captured. It is not uncom-
mon to report on overnight statistics (e.g. [18–21].), but in fact, 
these statistics often demonstrate the limitation of optimizing 
for epoch-by-epoch measures such as accuracy or agreement. A 
typical limitation is that performance with respect to reference 
PSG is poor for fragmented sleep [18–21]. Our results emphasize 
the importance of sleep fragmentation in the interpretation of 
hypnograms. As such, a measuring technique that achieves rea-
sonable epoch-per-epoch agreement with PSG, but presents a 
“smoothed” picture of sleep architecture because it missed sleep 
stage transitions and sleep fragmentation might lead to misinter-
pretation. Despite recent approaches to standardize validation of 
sleep trackers (e.g. [22, 23].) there is no consensus yet on how to 
report on overnight statistics. Based on our findings we recom-
mend to include sleep stage distribution and sleep fragmentation 
in evaluation of automated sleep staging methods.

Besides clinical applications, wearable sleep trackers have 
also become increasingly popular among consumers, presenting 
laypeople with hypnograms [24]. However, we show that a hyp-
nogram is difficult to interpret, requires clinical experience and 
domain knowledge, and is ambiguous especially when isolated 
from other clinical parameters. Consequently, and regardless of 
how reliably a consumer sleep tracker performed sleep staging, 
the hypnograms presented by these trackers might drive wrong 
interpretations by the consumer. Misinterpretation in combina-
tion with overreliance on sleep tracker data can have negative 
side effects, possibly leading to further disordered sleep, a con-
dition recently coined “orthosomnia” [25]. We here argue for the 
derivation of features that are clinically relevant, this however, 
comes with the caveat that the sleep staging of these wear-
ables must be done reliably. Due to their reliance on surrogate 
measures of sleep, these trackers usually have a larger degree of 
uncertainty about the correct output. In an ideal world, the sleep 
tracker would display not only interpretable and relevant meas-
ures of sleep to the user, but also the degree of certainty that the 
tracker has about its beliefs. This way, the user may be reassured 
when e.g. the tracker reports bad sleep at very low certainty.

Our results also cast a new light on the issue of low inter-
rater agreement between human sleep stage scoring. Inter-rater 

agreement is typically calculated on an epoch-by-epoch basis 
comparing the expert interpretation, by trained scorers, of the 
same recordings. The AASM inter-scorer reliability program, 
which was developed to aid sleep centers in achieving accredita-
tion standards, showed an overall agreement of around 82.6% [2]. 
However, by only calculating agreement on an epoch-by-epoch 
basis, all forms of disagreement are counted equally. Our research 
shows that some forms of disagreement might be more impor-
tant than others, as these could make a difference in the diag-
nostic process. For example, sleep stage fragmentation was found 
to be the largest contributor to an evaluation of a hypnogram as 
disordered. Programs such as the inter-scorer reliability, or the AI/
Autoscoring Pilot Certification program announced by AASM on 
their website, could be expanded to promote inter-scorer, or auto-
scoring agreement not only in terms of overall sleep stages, but 
also to increase agreement on hypnogram-derived metrics that 
might have clinical relevance, such as measures of fragmenta-
tion, etc.

In our study, we found that experts were systematically more 
certain about abnormal sleep structure evaluation, whereas 
normal, healthy evaluations were often associated with lower 
certainty. Moreover, based on the hypnogram alone, a sleep dis-
order was “suspected” in roughly half of the cases for healthy 
adults who did not have any sleep disorders or other comor-
bidities. These findings may be explained by first-night effects 
that impact sleep during the first night of PSG and therefore 
cause abnormal sleep structure in healthy participants [6]. In 
addition, it may well be that the notion clinicians have of a nor-
mal sleep structure is mostly based on textbook examples and 
infrequently encountered in their practice. The link between 
subjective sleep quality and objective measures derived from 
the hypnogram is not well established and remains an area of 
interest for further research [26]. Finally, experts in our study 
may have an inherited bias towards abnormal sleep, as they 
frequently encounter patients diagnosed with a sleep disor-
der but rarely see participants with normal sleep. In any case, 
the ability to identify healthy participants from an isolated 
hypnogram is limited. This underscores the well-known fact 
that hypnograms need to be interpreted in a clinical context. 
Although seemingly obvious, it is important to emphasize this 
point, since the increasing popularity of wearable sleep track-
ers will inevitably lead to an abundance of hypnograms with 
very little, or no additional context.

Regarding the limitations of this study, it considered hypno-
grams in an artificial research setting where the hypnograms 
were reviewed without any additional clinical information. By 
doing so, we aimed to emphasize the structure of the hypnogram 
itself. Nevertheless, this could be a limiting factor as it might lead 
to an overemphasis of the more salient features in the hypno-
gram; when additional information is presented, more specific 
and localized patterns might be more meaningful and stronger 
drivers for interpretation. Identifying such features is a topic for 
future research. This is relevant as disagreement between sleep 
technicians is known to be lower for certain sleep stages/types of 
fragmentation, for example, N1 [2].

Another potential limitation of this work is that all hypnograms 
were scored by technicians from one institution. However, there 
can be quite some inter-rater disagreement between technicians, 
which is even higher when these technicians come from different 
institutions [27]. The impact of institution and inter-rater disa-
greement on the evaluation of the hypnogram by experts is also 
left to future work.
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Conclusions
Sleep stage distribution, sleep cycles, and fragmentation are 
strong predictors of how an expert interprets a hypnogram. By 
comparing hypnograms not solely on an epoch-by-epoch basis, 
but also on these more specific features that drive the evaluation 
by experts, performance assessment of (automatic) sleep-staging 
and surrogate sleep trackers may be improved and their rele-
vance increased. In particular, sleep fragmentation is a feature 
that deserves more attention as it is often not included in the 
PSG report, and existing (wearable) sleep trackers have shown 
relatively poor performance in capturing this aspect well. Finally, 
our work again emphasizes the limited ability to identify sleep 
disorders from an isolated hypnogram. Future work could explore 
how the mentioned salient hypnogram features could be used to 
further improve inter-rater programs, validate sleep trackers for 
clinical practice, and support novices in the field of sleep medi-
cine in interpreting hypnograms.
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