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Abstract—Sleep staging is the process by which an
overnight polysomnographic measurement is segmented
into epochs of 30 seconds, each of which is annotated
as belonging to one of five discrete sleep stages. The re-
sulting scoring is graphically depicted as a hypnogram,
and several overnight sleep statistics are derived, such
as total sleep time and sleep onset latency. Gold stan-
dard sleep staging as performed by human technicians is
time-consuming, costly, and comes with imperfect inter-
scorer agreement, which also results in inter-scorer dis-
agreement about the overnight statistics. Deep learning al-
gorithms have shown promise in automating sleep scoring,
but struggle to model inter-scorer disagreement in sleep
statistics. To that end, we introduce a novel technique using
conditional generative models based on Normalizing Flows
that permits the modeling of the inter-rater disagreement of
overnight sleep statistics, termed U-Flow. We compare U-
Flow to other automatic scoring methods on a hold-out test
set of 70 subjects, each scored by six independent scor-
ers. The proposed method achieves similar sleep staging
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performance in terms of accuracy and Cohen’s kappa on
the majority-voted hypnograms. At the same time, U-Flow
outperforms the other methods in terms of modeling the
inter-rater disagreement of overnight sleep statistics. The
consequences of inter-rater disagreement about overnight
sleep statistics may be great, and the disagreement po-
tentially carries diagnostic and scientifically relevant infor-
mation about sleep structure. U-Flow is able to model this
disagreement efficiently and can support further investiga-
tions into the impact inter-rater disagreement has on sleep
medicine and basic sleep research.

Index Terms—Automatic sleep staging, deep learning,
generative ai, inter-rater disagreement, uncertainty.

I. INTRODUCTION

THE diagnosis of many sleep disorders is generally sup-
ported by an overnight polysomnography (PSG). Dur-

ing such a PSG measurement, several physiological signals
are recorded including, among others, electroencephalography
(EEG), electrooculography (EOG), electromyography (EMG),
and electrocardiography (ECG). These data are then visually in-
spected by a technician, and, following the American Academy
of Sleep Medicine (AASM) scoring rules [1], each 30-second
segment, known as an epoch, is annotated as one of five dis-
crete sleep stages: Wake (W), Rapid Eye Movement (REM), or
non-REM (NREM) stage 1-3. The resulting sequence of sleep
stages is visually represented in a hypnogram. This hypnogram
is presented to the physician in a sleep report together with
overnight sleep statistics derived from the scored epochs. Ac-
cording to the AASM, these statistics include, among others,
total sleep time, time spent in each sleep stage, sleep onset
latency, and stage REM latency. Depending on the preferences
of e.g. the manufacturer of a sleep diagnostic system they might
also include the number of awakenings in both REM and NREM
sleep. These sleep statistics are used in support of diagnosis and
in basic sleep research.

Sleep staging, however, is not perfect and displays inter-rater
disagreement for human technicians. In 2013, Rosenberg and
Van Hout showed that individual scorers only tend to agree in
82.6% of epochs to a group consensus [2]. When scoring specific
sleep stages, such as N3, the agreement of an individual scorer
to a group consensus further dropped to 67.4%. More recently, it
has also been shown that agreement between individual scorers
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is approximately inversely proportional to the square root of the
number of scorers [3].

As a result of this inter-rater disagreement, there will also
be variability in the overnight sleep statistics. However, while
the inter-rater disagreement of human technicians itself has
widely been studied [2], [4], [5], its effect on sleep statistics
has not. This is likely because multi-scorer hypnograms are not
part of standard clinical practice, as these are both impractical
and expensive. Nonetheless, the consequences of inter-rater
disagreement on sleep diagnosis and basic sleep research may
be great and could contain medically relevant information.

The recent explosion in computational power and deep learn-
ing (DL) [6] could provide the solution to the problem of costly
multi-scoring of hypnograms. DL has already enabled many ad-
vancements in the field of automatic sleep stage scoring [7], [8],
[9], [10], [11], [12], [13]. A recent review by Phan and Mikkelsen
gives a thorough overview of recent methods [14]. The hypn-
odensity concept is especially interesting from the perspective of
modeling the inter-rater disagreement [7]. In the hypnodensity
concept, rather than having the automatic scoring algorithm
output a hypnogram with a single sleep stage per epoch in the
recording, it outputs a graph displaying a categorical distribution
over all sleep stages for each epoch. It has been shown that such
a hypnodensity graph matches well with the label distribution
of a human panel [3], [7], [15]. In other words, the DL model
which outputs a hypnodensity graph correctly learns to model
the inter-rater disagreement on an epoch-based level.

However, it remains unclear how to extrapolate the hypnoden-
sity approach to model the inter-rater disagreement of overnight
sleep statistics. This is because the hypnodensity approach,
which leverages the cross entropy loss, factorizes the hypno-
gram into a series of categorical distributions, which removes
contextual information about dependencies between epochs. For
example, a human scorer might score a series of epochs as all
belonging to N3, while another scorer might score them all as
belonging to N2. The assumed factorization is unable to model
this all-or-nothing dependency between these epochs and will
thus be unable to correctly estimate the inter-rater disagreement
of the sleep statistics.

We hypothesize that to model the inter-rater disagreement
of overnight sleep statistics correctly, a DL method needs to
be able to provide multiple, valid, hypnograms given a single
PSG, similar to a panel of human scorers. We leverage the fact
that such a one-to-many relationship can be estimated efficiently
using conditional generative neural networks. Generative neural
networks can learn a mapping from an easy to sample dis-
tribution, e.g. Gaussian, to a more complex data distribution,
where this mapping can also depend on a conditioning. For
example, a conditional generative network can create a set of
images that all fit a textual prompt. In our case, we leverage
the conditional generative network to estimate the probabil-
ity distribution of hypnograms given a measured PSG (i.e.
p(hypnogram|PSG)). Several approaches have been proposed
in literature, these include among others, conditional variational
autoencoders [16], which are trained using the evidence lower
bound, conditional generative adversarial networks [17], which
are trained indirectly using an adversarial loss, conditional diffu-
sion models [18], [19], [20], which are trained using denoising

score-matching, and conditional normalizing flows [21], [22],
which are trained using the exact log-likelihood.

In this work, we introduce U-Flow, an automatic sleep scoring
algorithm based on conditional normalizing flows. U-Flow is
able to learn how one PSG measurement is associated with
multiple different hypnograms due to the human inter-rater dis-
agreement, enabling us to estimate the inter-rater disagreement
of overnight sleep statistics. We summarize our main contribu-
tions as follows:

� We propose U-Flow, a novel sleep staging algorithm based
on conditional generative modeling.

� We show how the uncertainty of overnight sleep statistics
predicted by an automatic sleep staging model can be
compared to a human panel that scored the same recording.

� We found that joint modeling of the full hypnogram out-
performs both factorized (cross entropy) based methods
and Monte-Carlo dropout in its ability to capture uncer-
tainty of overnight statistics.

II. METHODS

A single PSG, when scored by a panel of human scorers will
result in a set of slightly different hypnograms, depending on the
experience and biases of each scorer. Fig. 1 shows an example
of a PSG scored by a panel of six human technicians. From each
hypnogram separately, overnight sleep statistics, such as total
sleep time, can then be calculated. The uncertainty or spread
in the estimation of the overnight sleep statistics by the human
panel can be visualized by plotting the empirical cumulative
distribution function (eCDF), which is shown all the way on
the right of Fig. 1. The eCDF is constructed by a series of step
functions, with each step located at an observed sample. In this
example, the steps are located at 436 minutes, 444 minutes, etc,
for the human panel. If we had access to an infinite number of
scorers, the eCDF would approach the ‘true’ CDF. Plotting an
eCDF is useful as several statistical measures, such as mean,
variance, skewness, and the presence of outliers can easily be
visually inferred.

In this manuscript, we argue for a similar approach using
neural networks that also output a set of hypnograms given a
PSG. The prediction pipeline for the hypnograms and the eCDF
of each overnight statistic is then the same between the human
panel and the automated method. It is then possible to evaluate
the performance of the automated method based on two different
categories. Firstly, the quality of the hypnograms themselves
can be evaluated by comparing the majority-voted hypnogram
of the human panel to that of the automated method in terms of
accuracy, Cohen’s kappa, and the per-class F1-scores. Secondly,
the estimation of the inter-rater disagreement about the overnight
sleep statistics can be evaluated by comparing the distribution
as estimated by the automated method against the human panel
using the kullback-leibler divergence, Kolmogorov-Smirnov
metric, and the Wasserstein distance.

The rest of this section will be structured as follows. First,
we will introduce the datasets that were used in this study and
the preprocessing performed on them. Second, we will explore
several posterior sampling methods that enable us to create
multiple valid hypnograms from a single PSG measurement.
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Fig. 1. Prediction and evaluation pipeline. Due to human inter-rater disagreement, a single PSG will result in a set of different hypnograms, and
thus a set of estimates for each overnight sleep statistic, such as total sleep time. We show how automated methods can be employed in a similar
way as a human panel. We evaluate the performance of the automated method by comparing the hypnograms in terms of accuracy, Cohen’s kappa,
and the F1-scores, and comparing the distribution of overnight sleep statistics using the kullback-leibler divergence, the Kolmogorov-Smirnov metric,
and the Wasserstein distance.

TABLE I
DATASETS USED IN THIS STUDY

Third, we will introduce U-Flow, our approach to sample a
hypnogram based conditionally on the PSG. Fourth, we cover
our implementation of a U-Net baseline. The, we explain how
both methods were trained. Last, we introduce the metrics that
we used to determine how well the inter-rater disagreement of
the overnight statistics was captured by the model.

A. Datasets

We make use of four different datasets: the Stanford Sleep
Cohort (SSC) [23], [24], the Dreem Open Datasets (DOD) [25],
the Institute of Systems and Robotics dataset (ISRUC) [26], and
the Inter-Scorer Reliability Cohort (IS-RC) [27], see Table I .
Together, the datasets comprise 921 overnight PSG recordings
covering 7261 hours.

The complete SSC comprises thousands of overnight sleep
recordings. Here we make use of the subset of SSC that is avail-
able through the National Sleep Research Resource [28], which
consists of 772 PSGs of participants with varying sleep-related
disorders, including sleep-disordered breathing, insomnia, and
restless legs syndrome. We made use of this dataset in order to
include a large amount and variety of sleep recordings in the
training set. Each PSG recording in the dataset was associated
with only a single ground truth hypnogram as scored by a human

expert using the Rechtschaffen and Kales (R&K) rules [29].
The R&K scoring was harmonized to the AASM standard by
merging S4 and S3 into N3. Additionally, S1 was kept unchanged
as N1 and S2 as N2. REM and Wake were also not changed.
We had to exclude 111 out of the 772 available PSGs because
not all selected channels were available (see Section II-B). Of
the remaining 661 PSGs, 529 (80%) were randomly chosen to
be included in the training set and the remaining 132 (20%)
were used in the validation set, which was used to monitor for
over-fitting during training.

DOD consists of two separate subsets: DOD-H contains 25
PSG recordings of healthy participants, and DOD-O contains
55 recordings of obstructive sleep apnea (OSA) patients. Each
recording in both DOD-O and DOD-H is scored by 5 different
sleep experts using the AASM guidelines. All 80 recordings of
both DOD-H and DOD-O are used in the training set in order
to make the model learn that a single recording can result in
multiple different, but valid, hypnograms.

ISRUC consists of three subsets. We only make use of subsets
I and III as these contain PSGs scored by 2 different human
experts, and thus enable the model to learn the uncertainty in
scoring. The annotators followed the AASM guidelines, version
unspecified. Subset I contains recordings of 100 participants
with a variety of disorders and subset III contains 10 healthy
participants. All 110 recordings of ISRUC are used in the
training set.

IS-RC contains 70 PSGs of middle-aged women (51.1 ± 4.2
years) suspected of sleep-disordered breathing. Each PSG was
scored by 10 human experts from 5 different sleep centers (2
experts per center) following the AASM guidelines. However,
only the scorings from 3 centers (and thus 6 scorings per subject)
are available. Because IS-RC was scored by a variety of experts
coming from different sleep centers, we use it exclusively as a
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hold-out test set. For one recording in the IS-RC set, only 5 out
of 6 of the scorings were available, on which the subsequent
analyses for that subject were performed.

B. Channel Selection and Preprocessing

We use the following signals from the PSG as input to all
neural networks: EEG (C3-M2, C4-M1, O2-A1, O1-A2), EOG
(LOC-A2, ROC-A1), EMG (EMG1-EMG2), and ECG. Because
sampling frequencies differ between datasets by non-integer
factors (SSC 256 Hz, DOD 250 Hz, ISRUC 200 Hz, IS-RC
128 Hz) we employ polyphase filtering to resample all channels
of all datasets to the lowest available sampling frequency of
128 Hz. This subsampling does not impact relevant sleep staging
information present in the EEG and EOG signals, where the
AASM recommends the usage of a low pass filter at 35 Hz, and
only minorly impacts the EMG and ECG signal, where the low
pass filter is recommended to be at 100 Hz.

No additional signal validation to check for segments of bad
quality or loss of signal was performed on top of what might
already have been done by the original authors of each dataset.
We cropped the IS-RC recordings to only contain epochs where
the scoring from all scorers was available, on average trimming
93 minutes at the start of each recording and 122 minutes at
the end. Since there is no lights-on/lights-off information avail-
able, we assume that scoring spans this period. This cropping
equalizes the calculation of sleep statistics such as sleep onset
latency between the six scorers, where we now start counting
from the same moment in time. All PSG recordings were then
zero-padded to a length of 7 ∗ 28 = 1792 epochs for implemen-
tation purposes. This additional padding was solely added for
training purposes, and excluded when computing performance
such as accuracy or Cohen’s kappa.

As a final preprocessingxvv step, the data is rescaled using
the following procedure [7]:

x̃ = sign(x) · log
( |x|
P95(x)

+ 1

)
, (1)

where x is the input signal, x̃ is the scaled output, and P95(x)
is the 95th magnitude percentile. We perform this scaling in the
log-domain, as it is close to linear around 1, but helps push up
very low signal values, and push down very high signal values.
Moreover, scaling is done based on the 95th-percentile instead of
the maximum value (100th-percentile), so as to be less sensitive
to outliers in the ExG signals.

C. Posterior Sampling

Since a single PSG measurement can result in multiple hypno-
grams and multiple estimates of the overnight statistics, from
the point of view of the automatic method, we have what is
known as aleatoric uncertainty [30]. This can be modeled as
a conditional probability distribution over all possible outputs:
p(h|x), where x is the PSG and h is the hypnogram. Posterior
sampling can then be leveraged as h ∼ p(h|x) to yield a set
of plausible hypnograms given the input PSG. Similar to the
panel of human scorers, the overnight sleep statistics can be
calculated separately for each hypnogram s = fstat(h), which

then allows us to calculate the eCDF for each overnight sleep
statistic P (s|x).

We implement three methods for posterior sampling: factor-
ized sampling from the hypnodensity graph, Monte-Carlo (MC)
dropout, and sampling from the joint distribution, see Fig. 2. We
will now describe each of these methods.

1) Factorized Sampling: Current DL methods for automatic
sleep staging are generally trained using cross entropy as a loss
function. These methods use a softmax activation function to
output a categorical distribution over sleep stages for each epoch.
The hypnodensity graph is the visualization of all these categor-
ical distributions over time [7]. More formally, a factorization
of categorical distributions over epochs is assumed as:

p(h1:T |y1:T ) =

T∏
t=1

L∏
l=1

y
[ht=l]
t,l , (2)

where T is the number of epochs in the recording, L is the
number of sleep staging labels, ht is the sleep stage for the
epoch at time t, and yt,l is the softmax output of the neural
network at time t and for label l. The expression [ht = l] eval-
uates to 1, if ht = l, and is 0 otherwise, thereby selecting only
the relevant softmax outputs given the hypnogram h1:T . Cross
entropy-based methods are however lacking in the sense that
modeling the inter-rater disagreement of the overnight statistics
can be difficult, because we need a set of discrete hypnograms
for that. Taking the cross entropy loss to its logical conclusion,
factorized posterior sampling is leveraged from (2), see the left
column of Fig. 2.

2) MC Dropout and Bayesian Neural Networks: In Bayesian
neural networks, the learned parameters of the network are not
points, but rather distributions [31], [32], [33]. During each pass
through the network, the parameters for that pass are sampled
from the learned distributions, resulting in different outputs
each time, even for the same input data, see the central column
Fig. 2. The simplest form of such a Bayesian network is MC
dropout [34]. In MC dropout, random connections in the neural
network are set to zero by sampling from a Bernoulli distribution.
While often only employed during the training phase to combat
over-fitting, MC dropout can also be employed during inference
to yield diverse outputs. It has been shown that MC dropout
outperforms other Bayesian approaches [32], [33]. While MC
dropout has been used in sleep staging before to quantify uncer-
tainty per epoch [11], it has, to the best of our knowledge, not
yet been employed to generate diverse hypnograms and estimate
the uncertainty of summarizing sleep statistics. We employ MC
dropout on the same network architecture as is used for the
factorized approach as a means of posterior sampling, see the
middle column of Fig. 2.

3) Joint Modeling: Modeling the joint distribution p(h1:T |
x1:T ) directly, instead of its factorized form, is achieved here
by employing conditional generative networks. Conditional
generative approaches take randomly sampled latent variables
z ∼ N(0, I) and map them to the desired signal, where this
mapping is conditioned on some context. In our case, the desired
signal would be the hypnogram and the context would be the
PSG, see the right column Fig. 2. Several approaches have been
proposed in literature, these include among others, conditional

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 14,2023 at 15:38:37 UTC from IEEE Xplore.  Restrictions apply. 



VAN GORP et al.: MODELING THE IMPACT OF INTER-RATER DISAGREEMENT ON SLEEP STATISTICS USING DEEP GENERATIVE LEARNING 5603

Fig. 2. Graph models of posterior sampling of the overnight statistics. Shown here are factorized, MC dropout, and joint modeling methods.

Fig. 3. Architecture of the proposed U-Flow network (top) and the U-Net baseline (bottom).

variational autoencoders [16], conditional generative adversarial
networks [17], conditional diffusion models [18], [19], [20],
and conditional normalizing flows [21], [22]. To the best of our
knowledge, none of these approaches have been applied to sleep
staging. Here we choose to make use of conditional normalizing
flows, as these methods are efficient to sample from and can be
trained on the exact likelihood function p(h1:T |x1:T ).

D. U-Flow (Joint)

Normalizing Flows (NFs) are a type of generative neural
network that learn to transform a latent base distribution, of-
ten modelled as multivariate normal distribution, into a more
complex data distribution, by using a series of learned invert-
ible mappings. Commonly used architectures for NFs include
RealNVP [35] and Glow [36]. We refer the reader to the review
paper by Kobyzev et al. for a more thorough introduction and
overview of Normalizing Flows [37].

1) Architecture: Here, we adopt a Glow network into a 1D
structure (instead of the original 2D structure aimed at image
generation), termed U-Flow. U-Flow takes a base distribution

pZ(z1:T ) ∼ N (0, I) and maps it to the hypnogram h1:T . Addi-
tionally, this mapping is conditioned on a learned context c0:8
extracted from the PSG signal x at different resolution levels,
where each resolution level corresponds to a halving in size, see
Fig. 3. U-Flow can then be described as:

z1:T = fGlow(h1:T |c0:8), h1:T = f−1
Glow(z1:T |c0:8). (3)

The learned conditioning vector is created by a convolutional
neural network that consists of two parts, an epoch encoder
and a context encoder. The epoch encoder takes the full PSG
measurement as input, which is of length #epochs · 30s · Fs.
Through a series of convolutional layers of kernel size 7, max
pooling of kernel size 4, and a final convolution of kernel size
and stride 15, the epoch encoder compresses the input to a length
of #epochs.

The epoch encoding is then fed into the context encoder,
which consists of 8 blocks, each with two convolutional layers
of kernel size 7 followed by a max pooling operation of size
2. The output of the max pooling operation at each resolution
level r is used as part of the conditioning vector cr. Each
convolutional layer is followed by a ReLU activation function
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Algorithm 1: U-Flow Training.

and a dropout layer with probability 0.5 for an element to be
zeroed out. Moreover, all convolutions (except the last epoch
encoder convolution) make use of padding = ‘same’ (e.g. a
padding of 3 zeroes in the case of a kernel of size 7).

In contrast to the context encoder that progressively lowers in
size, the Glow model progressively increases in size using 8 lev-
els. We modify the standard squeezing and splitting operations
to work on the 1D hypnogram. Each flow consists of 6 steps that
are conditioned on the cr of the same resolution. The coupling
network is implemented using three convolutional layers of
kernel size 7, followed by a ReLU and activation normalization.
See the supplemental material for a more thorough explanation
of these three building blocks (squeeze, split, and flow).

2) Loss Function: U-Flow is trained using the exact negative
log-likelihood of the hypnogram as given by the change of
variables formula:

Lfflow
= − log pH(h̃1:T |x1:T )

= − log(pZ(fGlow(h̃1:T |c)) · |det JfGlow(h̃1:T |c)|)
= |z|22 − log | det JfGlow(h̃1:T |c)|, (4)

where det J is the determinant of the Jacobian of the Glow
model, which accounts for the change of probability density,
and h̃t is the one-hot encoded ground truth hypnogram. Note
how no factorization over epochs is applied in this loss function,
rather the loss function takes the entire joint distribution into
account. Because the change of variables formula is defined in
continuous space, but the hypnograms are discrete, we apply
dequantization using triangular noise:

h̃deq = 0.5h̃+ 0.25u1 + 0.25u2, (5)

with u1 and u2 i.i.d. samples from the uniform distribution. We
provide pseudo-code for the training loop in algorithm 1.

3) Inference: In inference, the conditioning of the U-Flow
model from the PSG is paired with 1024 i.i.d. sampled latent
vectorsz. The Glow model is then run in the generative direction

Algorithm 2: U-Flow Inference.

for each conditioning-latent code pair, resulting in 1024 different
hypnograms, all belonging to the same PSG, see algorithm 2 for
the accompanying pseudo-code.

E. U-Net (Factorized and MC Dropout)

1) Architecture: We create a U-Net of similar structure to
U-Flow. The U-Net decoder also consists of 8 blocks. Each block
consists of an upconvolutional layer of size 2, whose output is
concatenated with the skip connections of the encoder. This is
used as input for 2 convolutions of kernel size 7 with a ReLU
activation function and a dropout layer with probability 0.5 for
an element to be zeroed out. As a final step, a convolutional layer
of kernel size 1 is used to output the logits φ (log-probability)
of each sleep stage, which can be mapped to the probabilities y
using the softmax activation function.

2) Loss Function: The U-Net is trained using cross entropy,
which assumes a factorization of categorical distributions over
the epochs:

Lcross entropy =

T∑
t=1

h̃t · log(yt). (6)

3) Inference: During inference, U-Net can be used in two
modes: factorized sampling or MC dropout. In the case of
factorized sampling, one forward pass through the network is
performed, yielding the logits of each class. Gumbel sampling
is used to sample from the categorical distribution specified by
the logits [38]. This is done using 1024 i.i.d. samples of Gumbel
noise, ε, to get 1024 different hypnograms:

ht = argmaxφt + εt ∀t. (7)

In MC dropout mode, all dropout layers are enabled even during
inference. Now, 1024 individual passes are performed through
the network using the same input PSG data. Because the dropout
layers will zero out different connections each time, this method
will result in 1024 different hypnograms.
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Fig. 4. Example results for the PSG in the test set where U-Flow has median performance in terms of accuracy. Shown here are 6 samples (out
of 1024) from each DL method, as well as the 6 ground truth hypnograms made by the panel of human scorers.

Fig. 5. Empirical distribution functions for ‘time in N3’ calculated from the hypnograms shown in Fig. 4.

F. Training Strategy

Both U-Flow and U-Net are trained with their respective
loss function for 200 dataset iterations using mini-batches of
two whole-night PSGs. We use the Adam optimizer [39] with
parameters: lr = 10−4, β1 = 0.9, and β2 = 0.999. After 100
dataset iterations the learning rate is lowered to 10−5 to aid with
convergence.

G. Overnight Statistics Metrics

1) Kullback-Leibler Divergence: To calculate the Kullback-
Leibler divergence, we first fit a normal distribution to the
sampled overnight statistics for each recording for each method
by calculating the sample mean and standard deviation. Then
the Kullback-Leibler divergence can be calculated as:

KL (N1,N2) = log

(
σ2

σ1

)
+

σ2
1 + (μ1 − μ2)

2

2σ2
2

− 1

2
, (8)

where N1 is the normal distribution as estimated from the human
panel, and N2 the normal distribution as estimated from one of
the DL methods. Moreover, μ1 and μ2 are the means and σ1 and
σ2 the standard deviations of the two normal distributions. For
numerical stability, division by zero is counteracted by clipping
the minimum values of the standard deviations at 10−2. Note that
the Kullback-Leibler divergence is calculated for each recording
for each overnight statistic separately.

2) Kolmogorov-Smirnov Metric: The Kolmogorov-Smirnov
metric can be calculated from the eCDFs for each recording for

overnight statistic as:

KS (F1(s), F2(s)) = sups|F1(s)− F2(s)|, (9)

whereF1(s)andF2(s) are the eCDFs of the human panel and DL
method, respectively. Moreover, sups is the supremum function
which returns the maximum absolute difference between the
two eCDFs. A visual representation of the Kolmogorov-Smirnov
metric can be found in the supplementary material.

3) Wasserstein Distance: The Wasserstein distance, also
known as the earth mover’s distance or the Kantorovich–
Rubinstein metric, expresses how much effort is required to
change one probability function into another. We here make use
of the 1-Wasserstein distance, which can be calculated efficiently
by using the cumulative distributions:

W1 (F1(s), F2(s)) =

∫
R
|F1(s)− F2(s)| ds. (10)

A visual representation of the Wasserstein distance can also be
found in the supplementary material.

III. RESULTS

A. Qualitative Example

A qualitative example where U-Flow achieves median perfor-
mance in terms of accuracy is shown in Fig. 4. This figure also
shows the hypnograms for the same subject as scored by the
human panel and the two U-Net approaches: factorized and MC
dropout sampling. Note that we only show 6 out of the 1024
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TABLE II
METRICS ON THE PREDICTED DISTRIBUTIONS OF OVERNIGHT STATISTICS OF EACH MODEL COMPARED TO THE HUMAN PANEL

hypnograms sampled with the DL methods. The figure shows
that sampling from a factorized distribution as learned by a cross
entropy loss function leads to too many state transitions. This
is because contextual information about dependencies between
epochs is lost through factorization. On the other hand, MC
dropout leads to too conservative estimates of the amount of state
transition. Both of these sampling methods, however, greatly
underestimate the amount of uncertainty or inter-rater disagree-
ment for the overnight statistic ‘time in N3’, which is shown
in the eCDFs of the same recording, illustrated in Fig. 5. Here
it can be seen that the eCDFs of these two methods form very
sharp s-bends at around 20 and 30 minutes. The actual values
for ‘time in N3’ as calculated from the human panel range from
0 to 50 minutes, a spread in scoring that our proposed U-Flow
was much better able to capture. The eCDFs for all statistics for
this example can be found in the supplementary material.

B. Comparison With Other Approaches

We compared U-Flow quantitatively to the factorized and
MC dropout U-Net baseline. Additionally, we also compared
against two automatic scoring algorithms from the literature, the
Stanford staging algorithm [7] and U-Sleep [8], both of which
are factorized approaches.

C. Uncertainty Estimation of Overnight Statistics

For each recording in the hold-out test, we calculated 1024
and 6 samples of each overnight statistic from the provided
hypnograms of the DL models and the human panel, respec-
tively. We first compared the predicted samples to the ground
truth samples by modeling each statistic for each recording as
a normal distribution following the observed sample mean and
standard deviation. The normal distributions of the DL model
and human panel were then compared in terms of Kullback-
Leibler divergence. The mean Kullback-Leibler divergence over
the hold-out test set for each statistic is shown in Table II , where
lower is better.

To test for statistical significance, a paired student’s t-test was
applied between the best and second-best performing method
for each overnight sleep statistic. We choose a significance level
of α = 0.05 and applied a Bonferroni correction coefficient of
11 due to repeated testing over the 11 overnight sleep statistics.
This resulted in eight significant differences between the meth-
ods, each with U-Flow achieving the lowest Kullback-Leibler
divergence. The differences in Kullback-Leibler divergence
for the sleep- and REM onset latency were not statistically
significant.

We also evaluated the predicted samples using non-parametric
metrics on the eCDFs, namely the Wasserstein distance, and the
Kolmogorov-Smirnov metric, see Table II. We again test for
statistical significance using the same procedure. This resulted
in three and seven statistically significant differences, for the
Wasserstein and Kolmogorov-Smirnov metrics, respectively. All
statistically significant differences were in favor of the proposed
U-flow model, indicating that it was better able to model the
inter-rater disagreement of the human panel than the other
automatic scoring algorithms.

D. Evaluating the Hypnograms

To compare the hypnograms of the automatic scoring algo-
rithms with those of the human panel we used majority voting.
The majority vote of the 1024 samples from each model was
compared to that of 6 human scorers. For the human scorers, ties
were handled by using the scoring of the most reliable scorer,
following the procedure proposed by Guillot et al. [25]. We
compared the majority voted hypnograms in terms of accuracy,
Cohen’s kappa, and the per-class F1-scores on an epoch-by-
epoch basis, the resulting averages across the subjects are shown
in Table III .

We again tested for statistical significance using the paired
student’s t-test with a significance level ofα = 0.05 using a Bon-
ferroni correction coefficient of 7. The majority voting results are
highly comparable between methods, and the only significant
difference was found to be the F1 score for the N1 stage.
Per-subject results can be found in the supplementary material.
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TABLE III
ACCURACY, COHEN’S KAPPA, AND PER CLASS F1 SCORES

IV. DISCUSSION

In this manuscript, we proposed to model the relationship
between PSG and hypnograms as a joint conditional probability
function. This joint modeling approach, which we implemented
using the U-Flow architecture, allows for the creation of a set
of valid hypnograms from a single PSG measurement, similar
to how a panel of human scorers would have scored the PSG.
Going beyond previously proposed cross entropy approaches,
our method enables the modeling of the inter-rater disagreement
not only on a per epoch level but also at the level of overnight
sleep statistics.

A. Hypnodensity

Since the introduction of the hypnodensity concept in 2018,
thinking probabilistically about the relationship between sleep
recording and hypnogram has been gaining traction. Our ap-
proach is an extension of this line of thinking and fully com-
patible with the hypnodensity concept. To get a hypnodensity
graph using our approach, a similar strategy to getting the hypn-
odensity of a human panel can be applied. Namely, summing
the occurrence of each sleep stage divided by the total number
of scorers or samples, in case of a human panel or U-Flow
model, respectively. However, unlike the original hypnoden-
sity estimator, our new approach also permits sampling valid
hypnograms from the learned probability distribution, thereby
enabling assessment of downstream uncertainty of overnight
sleep statistics derived from hypnograms. Therefore, in this
manuscript, we focused on comparing the uncertainty estimates
of the overnight sleep statistics. Furthermore, to evaluate sleep
staging performance we compared the majority-voted hypno-
grams, rather than comparing the hypnodensity graphs, as the
former is still the gold standard in clinical practice and the
outcome of the PSG that clinical experts look at in daily practice.

While the hypnodensity approach has recently become more
popular, it has not yet led to probabilistic thinking about the
overnight sleep statistics. For example, whereas Bakker et al. [3]
argue in favor of hypnodensity, they recommend calculating the

overnight statistics as deterministic point estimates (e.g., sleep
onset latency as the first epoch with a sleep probability > 0.5).
Probabilistic thinking about the overnight statistics for human
panels has been explored in literature before, especially in terms
of (transformed) Gaussians [27], [40]. In the present study, we
extend this line of thinking, for the first time, to both human
panels and automatic scoring methods.

B. Inter-Rater Disagreement

Acquiring robust estimates of the impact of inter-rater dis-
agreement on overnight sleep statistics is important, as vari-
ability in the overnight statistics could impact the diagnostic
process. For example, disagreement about the time to REM sleep
could impact a narcolepsy diagnosis [41]. Moreover, the number
of awakenings may impact the physician’s perception of how
much sleep is fragmented and potentially has a large impact
on the assessment of an abnormal sleep pattern. Additionally,
basic sleep research findings that correlate overnight statistics
to clinically relevant outcomes are also impacted by inter-rater
disagreement. For instance, it has been found that increased time
in N1 and reduced time in REM are associated with worsening
cognitive performance in older men over time [42], whereas a
lower percentage of time in N3 is associated with hypertension
in both men and women [43]. However, it has been shown
that time in N1 and time in N3 are particularly sensitive to
inter-rater disagreement [44], possibly limiting the strength of
these findings. This is not limited to N1 and N3, and many
more examples of basic sleep research studies on overnight
statistics can be found, all possibly confounded by ambiguity
in the scoring of sleep [45], [46], [47], [48], [49].

C. Generalizability

Whereas most of the recordings in the training set (74%) only
had a single hypnogram as ground truth available, U-Flow still
extrapolated well to the multi-scored hold-out test set. This is
similar to findings reported in the literature, where this type of
extrapolation was also found [3], [7]. Moreover, none of the six
scorers in the hold-out test set were present in the training set,
but U-Flow still managed to both qualitatively and quantitatively
model their inter-rater disagreement. Whereas the idea of a
scoring ‘bias’ can be hard to quantify, this suggests that U-Flow
learned to cover a multitude of scoring ‘biases’. Recent work by
Huijben et al. explores the phenomenon of extrapolating to more
scorers, showing that an automatic scoring method converges to
the labeling distribution found in the training set, even if each
training example only has a single ‘hard’ label [50].

D. Limitations

A potential limitation of this study is the relatively homo-
geneous nature of the hold-out test set, which comprises 70
recordings of middle-aged women suspected of sleep-disordered
breathing. Further investigation into larger cohorts, with differ-
ent disorders, age groups, and disease severities, is required
to evaluate their effect on the performance of the proposed
method. It has for example been observed that sleep-disordered
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breathing and narcolepsy can negatively impact the inter-rater
agreement of human scorers [51], [52]. Additionally, it has been
observed that the inter-rater agreement of subjects submitted to
an intensive care unit is also relatively poor [53].

As the first application of conditional generative modeling
for sleep staging, no extensive hyperparameter search or tuning
was performed. These hyperparameters include, among others,
the number of training iterations, kernel sizes, and the num-
ber of posterior samples. The tuning of these hyperparameters
could lead to an increase in the performance of the methods
we implemented (U-Net and U-Flow) and bring their majority
voting results even closer to the performance of the literature
baselines. However, the theoretical difference in loss functions
and sampling principles between U-Flow and the (literature)
baselines remains the same. Which we have shown to work better
for the purpose of estimating the inter-rater disagreement of the
overnight sleep statistics.

E. Future Work

This work opens up several avenues for future research.
Firstly, only the usage of conditional normalizing flows was
explored. We leave the investigation of other conditional gen-
erative models to future work. Especially the exploration of
score-based diffusion models would be an interesting avenue of
research here, as these have gained recent popularity due to their
stable training mechanics and ability to generate high-fidelity
outputs [18], [19], [20]. Moreover, future work could extend our
approach to the estimation of overnight sleep statistics calculated
from other means than the hypnograms, such as the apnea-
hypopnea index. The scoring of disordered breathing events
could likewise be modeled using a joint conditional generative
approach. We also leave to future work the scoring of “sub-epoch
events”, such as arousals.

Additionally, the proposed joint modeling technique could
be applied to surrogate measurements that assess sleep stages
in an indirect way, such as photoplethysmography, suprasternal
pressure, or actigraphy. These methods are advantageous over
conventional PSG, as they are more comfortable to wear for
subjects, cheaper to use, and can be used for longitudinal and
ambulatory studies. The disadvantage of surrogate sleep trackers
is their lower performance, especially in the case of fragmented
sleep [54], [55]. One possible reason for this lower performance
is the lower amount of information about sleep stages present in
these surrogate measures. We thus have a large uncertainty about
which sleep stages to assign to each of the epochs. Our method,
which allows for the quantification of this uncertainty on both
a per-epoch level and on the level of overnight sleep statistics,
would be well suited for this task. By accurately estimating these
uncertainties, U-Flow could aid with the acceptance of such
surrogate sleep trackers in clinical practice. As it would allow
physicians and other sleep experts to better interpret the data
from such surrogate trackers, taking their uncertainty, due to
e.g. low signal quality, into account.

Moreover, the quantification of uncertainty has potential clin-
ical uses, such as the detection of sleep disorders linked to the
obfuscation of standard sleep patterns. It would for example be

interesting to investigate whether diseases such as Parkinson’s
lead to a larger degree of uncertainty about the overnight sleep
statistics. Last, but not least, the proposed method allows to
more cheaply study the effects of inter-rater disagreement in
sleep staging on sleep diagnosis and basic sleep research. See
for example the effects that are mentioned in Section IV-B, such
as the physician’s perception of a patient or the linking of time
in N3 to hypertension.

It remains an open question how to best present the out-
comes of our method in standard clinical practice. It would be
unreasonable to expect physicians to sift through a multitude
of hypnograms that all fit with the sleep measurement. We
hypothesize that it would be best to present them with the
majority-voted hypnogram from all the individual realizations,
e.g. the last row of Fig. 4, plus an optional hypnodensity graph.
Epochs with high variation between the different realizations
can then also be marked as uncertain. For the overnight statistics,
the uncertainty can be expressed visually using the cumulative
distribution functions as presented in Fig. 5. Alternatively, the
uncertainty can be expressed using the mean plus/minus the
standard deviation or the median and the interquartile range.
That way, it becomes easily interpretable how much variation
and uncertainty there is for each of the overnight statistics. Future
work should explore which presentation method is preferred by
clinical experts and its effect on the quality of care.
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KOLMOGOROV-SMIRNOV METRIC

The Kolmogorov-Smirnov (KS) metric can be calculated as
follows:

KS (F1(s), F2(s)) = sups|F1(s)− F2(s)|, (9)

where sups is the supremum function which returns the max-
imum absolute difference between the two eCDFs. Visually
this can be expressed as:
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Fig. 6. Visual representation of the KS metric calculated from two
eCDFs. The KS metric is calculated as the maximum distance in terms
of cumulative probability between the two eCDFs.

WASSERSTEIN DISTANCE

The Wasserstein distance is calculated as the total area be-
tween the eCDFs as follows:

W1 (F1(s), F2(s)) =

∫
R
|F1(s)− F2(s)| ds. (10)

Visually this can be expressed as:
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Fig. 7. Visual representation of the Wasserstein distance calculated
from two eCDFs. The Wasserstein distance is calculated as the total
area between the two eCDFs.

PER SUBJECT PERFORMANCE
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Fig. 8. Individual accuracy per recording. Note that the recordings have
been sorted according to the accuracy of the proposed joint modeling
method (U-Flow).
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Fig. 9. Individual Cohen’s kappa for per recording. Note that the record-
ings have been sorted according to the kappa values of the proposed
joint modeling method (U-Flow). Cohen’s kappa can be interpreted as:
0−0.10 no agreement, 0.11−0.20 slight agreement, 0.21−0.40 fair
agreement, 0.41−0.60 moderate agreement, 0.61−0.80 substantial
agreement, 0.81− 0.99 near perfect agreement, 1 perfect agreement.
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HYPNOGRAMS AND OVERNIGHT STATISTICS FOR SUBJECT WITH MEDIAN ACCURACY
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Fig. 10. Hypnograms for the recording with the median accuracy for U-Flow compared to the human panel.
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Fig. 11. Empirical distribution functions of each overnight statistic for the recording with the median accuracy for U-Flow compared to the human
panel.
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BUILDING BLOCKS OF THE GLOW MODEL

In this section we will elucidate all the building blocks of
the 1D Glow model used by U-Flow, as detailed in Fig. 3 of
the main manuscript. We will use the following notation: let
r ∈ [0, 8] denote the current resolution of the 1D Glow model,
let hr denote the current hidden vector, and let cr denote the
associated context vector which was created from the PSG
measurement by the epoch and context encoder. Furthermore,
the hidden vector hr ∈ RCh×L is of length L with Ch being
the number of channels. With slight abuse of notation, we will
drop r whenever it is not currently relevant. Lastly, we will
index the hidden vector as h[ch, l] to denote the element at
channel index ch and lenght index l.

Flow
At each resolution level r, six steps of flow are applied.

Each step of such a flow can be split into three operations: an
activation normalization layer (actnorm), a squeeze layer, and
a coupling layer.

Actnorm: In the actnorm layer, a scale and translate (s, t ∈
RCh) is learned per channel, so that for each channel sepa-
rately, the following forward and reverse operators are applied:

h̃[ch, :] = actnorm(h[ch, :]) = sch · h[ch, :] + tch (11)

h[ch, :] = actnorm−1(h̃[ch, :]) =
(
h̃[ch, :]− tch

)
/sch.

(12)

The log-determinant of such an operation can be calculated in
a straightforward manner as:

log |det J actnorm| = L ·
∑
ch

log |sch|. (13)

In other words, it is equal to summing the log of the
individual scales, and multiplying that by the current length
of the hidden vector. To make calculating the log-determinatnt
easier, we do not learn sch directly, but rather log |sch|.

Invertible Convolution: Kingma and Dhariwal introduced the
invertible convolution in their original Glow paper, in order to
permute the hidden vector along the channel dimension. This is
useful, because the main learned component of a normalizing
flow, the coupling layer, only applies a transformation to
half of the channel dimensions. By applying an invertible
convolution along the channel dimension, each channel gets a
chance to be transformed.

The invertible convolution can be interpreted as a matrix
multiplication along the channel dimension as:

h̃[l, :] = inv. conv.(h[l, :]) = Wh[l, :] (14)

h[l, :] = inv. conv.−1(h̃[l, :]) = W−1h̃[l, :], (15)

Where W ∈ RCh×Ch is a learned matrix. Calculating the log
determinant and/or inverse of this learned matrix scales with
O(Ch3). However, since the channel dimension in our 1D
Glow model never grows large, it is still computationally cheap
to calculate them. If computational cost really would become
an issue, one can use the LU decomposition as proposed by
Kingma and Dhariwal. Furthermore, during sampling, W−1

never changes again, so it can simply be cached in memory.

ℎ𝑟
𝐴 = [0.5𝐶ℎ × 𝐿] ℎ𝑟

𝐵 = [0.5𝐶ℎ × 𝐿] 𝑐𝑟
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CNN
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෨ℎ𝑟 = [𝐶ℎ × 𝐿]

𝑠

𝑡

Fig. 12. Illustration of a coupling layer. The input vector gets split along
the channel dimension. Part B, together with the associated context
information, goes through a CNN, that outputs a scale and translate
parameter. Part A gets multiplied and shifted by these. This operation is
invertible, since we never have to reverse through the CNN.

Coupling layer: The coupling layer is where the Glow model
really ’learns’. To learn interesting non-linear transformations,
the coupling layer leverages standard deep neural network
architectures, such as convolutional neural networks (CNN).
However, CNNs are typically not invertible, nor is it possible
to calculate the log-determinant for them. In order to circum-
vent this issue, the coupling layer first splits the input along the
channel dimension into two equal parts, A and B. Then, part B,
together with the relevant contextual information cr is fed into
such a CNN. This CNN then produces a scale and translate
vector, which is applied element-wise to part A. Laslty, parts
A and B are concatenated together again. Mathematically, this
all can be denoted as:

s, t = CNN(hB
r , cr) (16)

h̃
A

r = affine(hA
r ) = s · hA

r + t (17)

hA
r = affine−1(h̃

A

r ) =
(
h̃
A

r − t
)
/s. (18)

log |det J affine| =
∑
l

∑
ch

log |s[ch, l]|. (19)

Notice how even in the reverse process, we never have to revert
through the CNN, as part B and the contextual information
coming from the PSG stay fixed. By then stacking many
coupling layers and invertible convolutions after each other
(six in our case), all parts of the hidden vector get a chance
to be both part A and part B. In our case, the CNN is
implemented using three convolutions of kernel size 7, where
the first two are followed by activation normalization and
ReLU activation. The CNN outputs a translate vector t and
a scale vector s. To ensure that the scaling is stable during
inference, see equation (18), we want to avoid it getting close
to zero. Which we ensure by applying a sigmoid activation
function on it, and then adding a small amount of bias (0.01
in our case). See Fig.12 for an illustration.
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Split
The split and squeeze operation together form the normaliz-

ing flow analog of the subsampling operation. We cannot use
a standard subsampling operation, since the normalizing flow
architecture has to be invertible, and the upsampling operation
has to be the exact inverse.

In the split operation, similar to what is done in the coupling
layer, the current hidden vector is split along the channel
dimension into a part A and a part B. Then, part A is split of
from the rest of the model, and already appended to the latent
vector z, while part B is carried forward and goes through the
rest of the model. The hidden vector is thus reduced in size
by a factor 2, ensuring that we can use very deep normalizing
flow architectures, without computational complexity growing
out of hand. During the reverse process, we simply take part
A out of the latent vector z, and concatenate it again with B.

The intuition behind the split operation is that the hidden
vector h contains both complex data structures, which are
difficult to normalize and cast into Gaussians, and simple data
structures, which are easy to normalize. The Flow blocks that
precede the splitting operation should thus align the elements
of the hidden vector in such a way as to put the already
normalized information into part A, which are already put
into the latent vector z, while the rest is put in part B, to
be handeld by the deeper layers.

Squeeze
Whereas the splitting operation takes care of reducing the

number of elements in the hidden vector, the squeezing opera-
tion takes care of reducing the spatial resolution of the hidden
vector. This is analog to maxpooling or other subsampling
operations in a CNN, such that the deeper layers of the model
have a larger field of view.

In a 1D squeeze layer, the elements along the length
axis L are indexed, all the odd-numbered indices are left
in place, while all the even-numbered indices are taken out,
and concatenated channel-wise on top of the odd indices, see
Fig.13 for a visual illustration of this process. In other words,
the squeeze layer trades of resolution along the length axis for
resolution along the channel axis.

By now applying the 1d splitting and squeezing operation
together, we effectively reduce the number of elements of
the hidden vector by a factor 2 and decrease the resolution
along the length dimension by a factor 2. They thus forms the
normalizing flow analog of a pooling operation.

squeeze

𝐿

𝐶ℎ

2𝐶ℎ

0.5𝐿

Fig. 13. Illustration of a squeeze layer, where spatial resolution gets cut
in half by doubling the channel resolution.
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