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ABSTRACT

In sleep staging, a polysomnography is visually scored by a
human expert, who creates a hypnogram that classifies the mea-
surement into a sequence of sleep stages, from which overnight
sleep statistics, such as total sleep time, are derived. Because
inter-scorer agreement between humans is limited, deep learn-
ing methods trained to automate sleep staging have aleatoric
uncertainty about both hypnogram and overnight statistics. We
would like to estimate this aleatoric uncertainty, which can be
achieved by means of posterior sampling. Current approaches
model the hypnogram through a time-based factorization of
categorical distributions over sleep stages. This discards time-
dependent information, invalidating posterior sampling of the
overnight statistics. Instead of factorizing, we propose to
jointly model the sequence of sleep stages, by introducing
U-Flow, a conditional normalizing flow network. We compare
U-Flow to factorized baselines, leveraging 921 recordings, and
show that it achieves similar performance in terms of accu-
racy and Cohen’s kappa on the majority voted hypnograms,
while outperforming in terms of uncertainty estimation of the
overnight sleep statistics.

Index Terms— Automatic Sleep Staging, Overnight Sleep
Statistics, Aleatoric Uncertainty, Normalizing Flows

1. INTRODUCTION

Sleep staging is a crucial element in the diagnosis of many
sleep disorders, such as parasomnias, sleep apnea, and nar-
colepsy. Sleep staging is usually performed after an analy-
sis of the signals collected during a so-called polysomnog-
raphy (PSG) measurement, which typically includes elec-
troencephalography (EEG), electrooculography (EOG), elec-
tromyography (EMG), electrocardiography (ECG), among
other modalities, such as oxygen saturation and respiratory
effort. Following the American Academy of Sleep Medicine
(AASM) manual [1], the PSG measurement is divided into
non-overlapping segments of 30 seconds in length, called sleep

epochs®. These sleep epochs are scored visually as belonging
to one of five discrete sleep stages: Wake (W), Rapid Eye
Movement (REM), or non-REM (NREM) stage 1-3. The re-
sulting registration of how the sleep stages evolve during the
night is called a hypnogram. From this hypnogram, overnight
sleep statistics are calculated, such as total sleep time and the
number of awakenings. A physician is usually presented with
both the hypnogram and the overnight statistics in a lab report.

Because sleep staging is such a labor-intensive process,
great effort has been put into automating the process. Recently,
Deep Learning (DL) has enabled many advances in this field,
among which the Stanford staging algorithm [2], U-Sleep [3],
SleepTransformer [4], AttnSleep [5], and TinySleepNet [6].
We refer the reader to the review paper of Phan and Mikkelsen
for an overview of recent methods [7].

DL methods are trained on scorings of humans with imper-
fect inter-scorer agreement (~ 82.6% [8]). From the point of
view of the DL method, all scorings are equally "true’. Con-
sequently, DL methods should express aleatoric uncertainty
about what the correct sleep stage is for a given sleep epoch,
and accordingly for the overall hypnogram of a PSG recording
[9]. This can be expressed as the conditional probability distri-
bution p(h|x), where x is the PSG and h is the hypnogram.
The final step is then to calculate the overnight sleep statistics
s from the hypnogram using s = fyz4¢(h), which leads to the
conditional distribution p(s|x).

Current DL methods used for automatic sleep staging are
trained using cross entropy, which assumes a factorization of
categorical distributions over the sleep epochs in a recording:

L
yl=t (1)

E*ﬂ

p(hi.r|y,.7)
=11=1

where T is the number of sleep epochs in the recording, L is
the number of sleep staging labels, h; is the sleep stage for
the sleep epoch at time ¢, and ¥, ; is the softmax output of the
neural network at time ¢ and for label I. The expression [h; =

*To avoid confusion, we will refer to a 30 second segment of sleep as a
’sleep epoch’, and a full iteration over a dataset as a ’dataset epoch’.
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Fig. 1. Graph models of posterior sampling of the overnight
statistics. Cross entropy-based methods model the hypnogram
in factorized manner, while conditional generative approaches
do this jointly. The latter is advantageous for posterior sam-
pling as it can model dependencies between sleep epochs.

[] evaluates to 1, if hy = [, and is O otherwise, thereby selecting
only the relevant softmax outputs given the hypnogram h.7.

Conventionally, only the most likely hypnogram is pre-
sented as the output of the DL network and presented to the
user. However, such a point estimate only leads to one point
estimate of the overnight statistics. To estimate the aleatoric
uncertainty of the overnight statistics, we can perform posterior
sampling from p(h1.7|x1.7), see Fig. 1. We hypothesize that
such posterior sampling with current DL methods in sleep, will
however lead to wrong samples s ~ p(s|x) since the factoriza-
tion introduced in (1) removes crucial contextual information
about dependencies between sleep epochs.

In this paper, we propose to forgo the assumed factoriza-
tion of cross entropy to directly model the joint distribution
p(hyi.r|xi.7). To this end, we make use of a conditional deep
generative approach, which starts from a randomly sampled
latent variable z ~ N (0, I) that is mapped to a hypnogram,
where this mapping depends conditionally on the PSG (see
Fig. 1). To implement this mapping, we introduce a condi-
tional normalizing flow model [10, 11] that allows for exact
evaluation of p(hy.7|®1.7), termed U-Flow. U-Flow is based
on a combination of the popular normalizing flow network,
Glow [11], and the discriminative U-Net model [3]. Our main
contributions are:

* We propose U-Flow, combining the multi-scale architec-
ture of Glow with a U-Net.

* We show that joint modeling of the full hypnogram
outperforms factorized (cross entropy) based methods
in its ability to capture uncertainty of overnight statistics.

* For the first time, we show how multiple scorings per
PSG can be used to evaluate the uncertainty prediction of
overnight statistics of automated sleep staging models.

2. METHODS'

2.1. Datasets

We use four publicly available datasets. The Stanford Sleep Co-
hort [12, 13] made available through National Sleep Research
Resource [14] contains 772 single-scorer PSGs. We excluded
111 recordings because not all selected channels were avail-
able (see subsection 2.2). Of the remaining 661 PSGs, 529
(80%) are included in the training set and 132 (20%) are used
in the validation set.

The Dreem Open Datasets (DOD) [15] consists of two sep-
arate subsets: DOD-H contains 25 PSG recordings of healthy
participants, and DOD-O contains 55 recordings of obstructive
sleep apnea patients. All recordings were scored by 5 different
sleep experts. Both DOD-H and DOD-O are used for training.

From the Institute of Systems and Robotics dataset [16],
we use subsets I and III, which contain 110 recordings each
scored by 2 sleep experts, and we use it for training.

Lastly, the Inter-Scorer Reliability Cohort [17] contains 70
PSGs, each scored by 6 human experts coming from 3 different
sleep centers (2 experts per center). Because this dataset was
scored by a variety of experts coming from different sleep
centers, we use it exclusively as a hold-out test set.

2.2. Channel selection and preprocessing

We use the following signals from the PSG as input: EEG (C3-
M2, C4-M1), EOG (02-A1, O1-A2), EMG (LOC-A2, ROC-
Al, EMG1-EMG?2), and ECG. Because sampling frequencies
differ by non-integer factors (256 Hz, 250Hz, 200 Hz, and
128 Hz) we employ polyphase filtering to resample all PSGs
to 128 Hz. The recordings were zero-padded to a length of
7% 28 = 1792 sleep epochs for implementation purposes. This
additional padding was solely added for training purposes, and
not used for the computation of the final results. Additionally,
each input PSG signal is rescaled using:

@ = sign(@) - log (|&]/ Pos (@) + 1), @)

where & corresponds to each signal, x is the rescaled signal,
and Py5 (&) is the 95th magnitude percentile.

2.3. Overnight Statistics

To model the posterior sampling of the overnight statistics we
use the hypnogram as an intermediate step, since:

s~ p(5|w1:T) = fstat(hl:T ~ p(hlzt‘wlzT))~ (3)

It is thus sufficient to use a DL model to first sample from
p(h1.t|@1.7) and then use the deterministic ftq+ function to
calculate the overnight statistics. We calculated the following
overnight statistics: total sleep time, time spent in each sleep
stage, and the number of awakenings in either REM or Non-
REM sleep.

fhttps://github.com/HansvanGorp/U-Flow
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2.4. U-Flow

Normalizing flows are a type of invertible neural network that
learn a mapping from a normal latent distribution =z to a de-
sired output signal and back again. We use the popular Glow
architecture [11] that was originally proposed for 2d images
and adapted here to work on the 1d hypnogram. We addi-
tionally condition the Glow model on a learned conditioning
vector cy.g created from the corresponding PSG recording at
different resolution levels. U-Flow can then be described as:

211 = faiow(hirlC0s), hiT = fol.(Z1rlcos). @)

The learned conditioning vector is created by a convolu-
tional neural network that consists of two parts, a sleep epoch
encoder and a context encoder:

Cp:8 = (fenc o fepoch)($1:T)a (5)

where o denotes the composition of two functions. The sleep
epoch encoder takes the full PSG measurement as input, which
is of size (1792 - 30 - 128). It applies a convolution of kernel
size 7 and then a maxpooling of size 4, which together are
repeated 4 times. Then, a convolution of kernel and stride 15
is applied to achieve a sleep epoch encoding of size 1792.

The sleep epoch encoding is then fed into the context en-
coder, which consists of 8 blocks, each with two convolutional
layers of kernel size 7 followed by a max pooling operation of
size 2. The output at each resolution level r is used as part of
the conditioning vector c,.

In contrast to the encoder that progressively lowers in size,
the Glow model progressively increases in size using 8 levels.
Each level of Glow consists of 6 flow steps that are conditioned
on the ¢, of the same resolution. At the lowest scale, cg is only
of size 7, allowing the Glow model to have the entire night in
its receptive field by applying a kernel that is also of size 7.
For further details regarding the architecture of Glow, we refer
the reader to the original paper by Kingma and Dhariwal [11].

U-Flow is trained using the exact negative log-likelihood
of the hypnogram as given by the change of variables formula:

Lo, = —log p(h1.r|z1.7)
= —log(p:(faiow(hirle)) - | det J faiow (h1:rc)])
= ‘Z@ —10g|det JfGlow(ﬁl:T|c>|; (6)

Where det J is the determinant of the Jacobian of the Glow
model, which accounts for the change of probability density,
and h, is the one-hot encoded ground truth hypnogram.

Because the change of variables formula is defined in con-
tinuous space, but the hypnograms are discrete, we apply de-
quantization using triangular noise:

Rgeq = 0.5k + 0.25u; + 0.25us, (7

with u; and us i.i.d. samples from the uniform distribution.
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Fig. 2. U-Flow and U-Net have a similar architecture. How-
ever, U-flow makes use of a 1D invertible Glow.

During inference with U-Flow, we sample 1024 times
from p(hy.¢|x1.7) by first creating the conditioning using (5),
then sampling 1024 i.i.d. normally distributed latent variables
z ~ N(0,I), and finally applying the inverse of the Glow
model to each latent variable using (4).

2.5. Baseline

We create a U-Net baseline of similar complexity to U-Flow.
The baseline uses a similar structure to that of U-Flow, but we
change the 1d Glow model to a convolutional decoder. The U-
Net decoder follows a similar but mirrored structure to that of
the U-Net encoder, employing upconvolutions of size 2 instead
of max pooling operations. The outputs of the decoder are
the logits ¢ (log-probability) of each sleep stage, which can
be mapped to the probabilities y using the softmax activation
function:

¢1;T = (fdec © fenc © fepoch)(mlzT)7

Y7 = softmax(¢;.7).

®

The U-Net is trained using cross entropy, which assumes a
factorization of categorical distributions over the sleep epochs:

T
Ecross entropy — Z ht : IOg(yt) (9)

t=1
During inference with U-Net, we sample 1024 times from
p(h1.t|x1.7) leveraging Gumbel sampling [18]:

h, = argmax ¢, + €, Vi, (10)

with € i.i.d. samples from the standard Gumbel distribution.

2.6. Training strategy

Both methods are trained with their respective loss function
for 200 dataset epochs using mini-batches of two whole-night
PSGs. We use the Adam optimizer [19] with parameters: i =
1074, 81 = 0.9, and B2 = 0.999. After 100 dataset epochs
the learning rate is lowered to 10~ to aid with convergence.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 03,2023 at 12:22:06 UTC from IEEE Xplore. Restrictions apply.



U-Net (factorized)

U-Flow (joint)

Panel of scorers (ground truth)

§ i i §

Majority Vote

0 1 2 3 4 5 6 7 0 1 2 3
hours of sleep

hours of sleep

4 5 6 7 0 1 2 3 4 5 6 7
hours of sleep

Fig. 3. Example results for the PSG in the test set with median inter-rater agreement (84%). Shown here are six samples from
each DL method, as well as the six ground truth hypnograms made by the panel of human scorers. For both DL methods, the
majority vote is based on 1024 samples, not just the six samples shown here. { U-Flow predicts uncertainty of potential REM
period. I U-Net predicts too many stage transitions. § U-Flow correctly predicts uncertainty about the length of this N3 period.

Table 1. Average Kullback—Leibler divergence between the
predictions of the models and the panel, lower is better. As
well as the accuracy and Cohen’s kappa scores for the majority
voted hypnograms, higher is better.

(factorized) (joint)
U-Net Stanford U-sleep | U-Flow
Total sleep time 41.1 59.2 107 1.34
Time in N1 13.2 34.7 70.5 0.78
Time in N2 68.8 124 231 1.57
Time in N3 87.8 332 343 231
Time in REM 81.2 84.2 124 1.84
Awakenings - 1.30 1.71 3.20 0.66
from REM
Awakenings - 14.0 5.04 5.81 1.38
from NREM
Accuracy 71.7 84.1 83.3 83.2
Cohen’s Kappa | 0.667 0.751 0.747 0.735
3. RESULTS

A qualitative example of the resulting hypnograms for U-Net,
U-Flow, and the panel of human scorers is shown in Fig. 3.
It can be seen that qualitatively, factorizing leads to too many
state transitions over the whole recording, whereas joint mod-
eling only has a lot of state transitions were the human panel
also had them.

We quantitatively compare posterior sampling from U-
Flow against U-Net, the Stanford staging algorithm [2], and
U-Sleep [3]. From the 1024 hypnograms produced by each
method and the six hypnograms of the human panel, we cal-

culate the overnight statistics and summarize them using a
normal distribution following the observed mean and variance.
The distributions of the models are compared to that of the
human panel using the Kullback—Leibler (KL) divergence. We
also compare the majority vote results of each model to the
majority vote of the human panel. We assess both accuracy
and Cohen’s kappa, which takes agreement due to random
chance into account. The quantitative results are shown in
Table 1.

4. CONCLUSION

In this manuscript, we proposed to model the relationship be-
tween PSG and hypnograms jointly, instead of factorized per
sleep epoch as is assumed by cross entropy. We achieve this
through conditional deep generative modeling leveraging nor-
malizing flows in a U-Net-like structure, termed U-Flow. We
compared the proposed U-Flow model to factorized baselines,
concluding that it outperforms in terms of posterior sampling
of the overnight sleep statistics.

Here, we only investigated those overnight sleep statistics
than can be calculated solely from the hypnogram. How-
ever, there are other clinically relevant statistics, such as the
apnea-hypopnea index (AHI). Calculation of the AHI not only
requires jointly modeling PSG and hypnogram but also dis-
ordered breathing events. We leave uncertainty prediction of
the AHI to future work. Moreover, as the first application
of conditional generative modeling to sleep staging, we only
investigated the use of conditional normalizing flows. We
also leave the investigation of other conditional generative
techniques to future work.
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